‘ CERGY PARIS

oncentration

of
Matrix Product States

Guglielmo Lami

Laboratoire de Physique Théorique et Modélisation
Cergy Paris Université

2 October 2024



Anticoncentration and state design of random tensor networks

Guglielmo Lami ©,' Jacopo De Nardis ©.' and Xhek Turkeshi ©2

! Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089,
CY Cergy Paris Université, 95302 Cergy-Pontoise Cedex, France

2 Institut fiir Theoretische Physik, Univers u Kdln, Zilpicher Strasse 77a, 50937 Kéln, Germany

We investigate quantum random tensor network states where the bond dimensions scale polyno-
mially with the system size, N. Specifically, we examine the delocalization properties of random
Matrix Product States (RMPS) in the computational basis by deriving an exact analytical expres-
sion for the Inverse Participation Ratio (IPR) of any degree, applicable to both open and closed
houndary conditions. For bond dimensions xy ~ 4N, we determine the leading order of the as-
sociated overlaps probability distribution and demonstrate its convergence to the Porter-Thomas
distribution, characteristic of Haar-random states, as v increases. Additionally, we provide numerical
evidence for the frame potential, measuring the 2-distance from the Haar ensemble, which confirms
the convergence of random MPS to Haar-like behavior for x > +/N. We extend this analysis to
two-dimensional systems using random Projected Entangled Pair States (PEPS), where we similarly
observe the convergence of IPRs to their Haar values for y > /N. These findings demonstrate that
random tensor networks with bond dimensions scaling polynomially in the system size are fully
Haar-anticoncentrated and approximate unitary designs, regardless of the spatial dimension.




Matrix Product States (MPS)
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Matrix Product States (MPS)

MPS are prototypical many-body states!

e ground-states in 1D are MPS with finite bond dimension

e relatively easy to generate in lab (digital quantum platforms)

e extremly useful in numerical simulations (DMRG, TEBD, TDVP, etc.)

However many statistical properties are still not well explored!
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Random Matrix Product States (RMPS)

/ MPS tensors are sub-blocks of Haar matrices: \
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\ ') ~ unitary Haar matrix of size dy /
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General questions:

e How ergodic is this ensemble?

e How well does it approximate Haar states when scaling x with N7
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Inverse Participation Ratio (IPR)

Quantifying the anticoncentration of a state over the computational basis:
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Porter-Thomas distribution:
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Inverse Participation Ratio (IPR) of RMPS

/ Our results \
1. Exact formula for for IPRs (r = log, x)
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2. Distribution P(w) in the scaling limit IV, y — co with constant x/N
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Inverse Participation Ratio (IPR) of RMPS
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prediction for P(w) works also for small ~, x




Inverse Participation Ratio (IPR) of Random PEPS

Random PEPS with bond dimension y

Numerical results by Tensor Network contraction
in the replicas (permutation) space
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Inverse Participation Ratio (IPR) of Random PEPS

Random PEPS with bond dimension y
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hank you!
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