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Summary of the main results

[Avohou, Ben Geloun, Toriumi, Eur. Phys. J. C 84, 839 (2024) [arXiv:2404.16404]]

We enumerated U(N)®" ® O(D)®9 tensor invariants using group theoretic
formulas.

@ Our enumerations unveiled a wide array of novel integer sequences that have
not been previously known.

o For a general order (r, q), the counting can be interpreted as the partition
function of a topological quantum field theory (TQFT) with the symmetric
group as the gauge group. We identified the 2-complex pertaining to the
enumeration of the invariants, which in turn defines the TQFT, and establish
a correspondence with countings associated with covers of diverse topologies,
in general with branched points.

o At order (r,q) = (1,1), the numbers of invariants corresponds to the
numbers of certain cicular words with pattern avoidance, offering insights
into enumerative combinatorics and potentially to linguistics.




U(N)®" @ O(D)®9 tensor invariants

Consider
@ A tensor T transforms under the action of the fundamental representation of
the Lie group (®;_; U(N)) @ (®]-; O(Dy)).

Tal,az ..... ar,by,ba,..., by — U(l) U(z) cee U(r) Ot(lizﬁ Ol()f)dz ... O[gqqz[q Tcl,cz ..... c,,dy,d> dg -

aicy “axc2 arCr “bydy “bads *** Ybyd, ' €1,C25--+,Cr;01,02;. .,

o A(®_, UN))®( ;7:1 O(D;)) invariant (UO-invariant) is constructed by
contractions of complex tensors of order r + g (a given number, n, of tensors
T and the same number of complex conjugate T.)

— Therefore, UO invariants are tensor model invariants/bubbles.

@ An UO-invariant is algebraically denoted

n
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K, is a kernel composed of a product of Kronecker delta functions that
match the indices of n copies of T's and those of n copies of T's.
A given tensor contraction dictates the pattern of an edge-colored graph,
which can, in turn, be used to label the tensor invariant.




U(N)®" @ O(D)®9 tensor invariants

Diagram of contraction of
n tensors T and n tensors
T. For a given color i =
1,2,...,r, o represents the
contraction in the unitary
sector and, for any color j =
1,2,...,q, 7; represents the
contraction in the orthogonal
sector.

(72 S Sn)

Consider (r,q) = (3,3). An UO-invariant is defined by a (3 + 3)-tuple of
permutations (01,02, 03,71, T2, 73) from the product space (S,)*3 x (S2,)*3.

We will remove the vertex labeling (two configurations are equivalent if their
resulting unlabeled graphs coincide), which introduces more permutations
V1,72 € Sp, and g1, 02, 03 € S,[S2] the so-called wreath product subgroup of Sy,,.

The equivalence relation is
(01,0270377'177'2,73) ~ (7101’72, V10272, Y1032, V1727101, V1727202, 71W27'303)




Counting UQO tensor invariants
[Avohou, Ben Geloun, Toriumi, Eur. Phys. J. C 84, 839 (2024) [arXiv:2404.16404]]
(Idea)

We work with the equivalence relation to count the graphs, i.e., tensor invariants

(01702703,7'177'2773) ~ (7101’72, V10272, Y1032, V1727101, V1727202, V1727'3‘93)

o GxX—X.

@ Recall: orbit of an element x in X: the set of elements in X to which x can
be moved by the elements of G. G-x={g-x:g € G}.

a point (€ X) on an orbit — another point on the orbit.

number of equivalent classes of graphs = number of orbits

Burnside's lemma

forb = ﬁ >gec [Fix(g)[, where Fix(g) = {x € X : gx = x}.

Therefore the counting of UO invariants of order (r,q) is
1
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example: U(N)®3 @ O(D)®3 tensor invariants
[Avohou, Ben Geloun, Toriumi, Eur. Phys. J. C 84, 839 (2024) [arXiv:2404.16404]]

U(N)®3 ® O(D)®3 tensor invariants are enumerated in the increasing number of
tensors: 1,108, 20385, 27911497, 101270263373, 808737763302769, ...

@@@@
@@@@
@@@@@@

UO-invariant graphs at order (r, q) = (3,3) with 4 tensors (n = 2). The integer
below each graph enumerates various possibilities based on index colors,
summing to 108 for all configurations. Black edges are in the U-sector, and red
are in the O-sector.



TQFT (lattice gauge theories)

@ On a cellular complex X, we can define a partition function for a finite
group G by assigning a group element g, to each edge (1-cell) and to each

plaquette (2-cell) P a weight Wp(]_[eepge). The partition function of this
lattice gauge theory is

Z[X; G] = @ZHWP(H&),

ecP

with V' the number of vertices in the cell decomposition.

@ The theory is topological because it is invariant under refinement of the
cellular decomposition.

o When G = S, (symmetric group or permutation group), it has applications
to QFT combinatorics. [Ben Geloun, Ramgoolam, Ann. Inst. H. Poincare Comb.
Phys. Interact. 1 (2014) 1]

@ The partition function counts equivalence classes of homomorphisms from
m1(X) to S,, i.e., counts equivalence classes of covering spaces of X of
degree n counted with a certain weight.




an example of permutation TQFT

e.g., Consider the torus realised as a rectangle.

@ The partition function of this lattice gauge theory is given by

Z(T%S,) = % Z S(yoy~to™Y).

" ov€ES,

e §(yoy~to7l) or ~yoylo~! =idis represented by the torus and v and o

are the generators of the fundamental group of the torus.
o

T O

0.—1

e Z(T? S,) counts n-fold covers of the torus.



permutation TQFT for UO tensor invariants

[Avohou, Ben Geloun, Toriumi, Eur. Phys. J. C 84, 839 (2024) [arXiv:2404.16404]]
Recall the counting of UO invariants of order (r, q)

1
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TQFT reformulates our enumeration.

2-cellular complex associated with the
TQFT> of Z34) made of 3+4 cylin-
ders sharing boundaries.




permutation TQFT for UO tensor invariants
[Avohou, Ben Geloun, Toriumi, Eur. Phys. J. C 84, 839 (2024) [arXiv:2404.16404]]

The counting of UQO invariants of order (r, g) can be massaged:

r
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We are counting equivalence classes of r permutations ¢; under the conjugation
oj ~ yo;y~1, and the group generated by r generators subject to one relation by
the last constraint o [['_, 0; = id, i.e., the fundamental group of the 2-sphere

with r-punctures.

Therefore, Z(, )(n) counts the covers of the r-punctured sphere with each cover
weighted by Z7_, i.e., enumerates 7 -weighted equivalence classes of branched
covers (with r branched points of degree n) of the sphere.




Consequences and Outlook

[Avohou, Ben Geloun, Toriumi, Eur. Phys. J. C 84, 839 (2024) [arXiv:2404.16404]]

@ We added more correspondence between the enumeration of tensor
invariants and 2-dimensional permutation TQFT.

@ The sequences of numbers corresponding to our enumerations * 2 are new
and unknown before in OEIS (Online Encyclopedia of Integer Sequences).

@ So far, regardless of whether the invariants are unitary [Ben Geloun,
Ramgoolam 2013], orthogonal [Avohou, Ben Geloun, Dub 2019], or UO
symmetric, we consistently find a correspondence with (branched) covers of
either the sphere or the torus (possibly with punctures). We ask what about
non-orientable manifolds, e.g., the projective plane, the Klein bottle (as a
closed manifold)? Which types of tensors, transformations, and tensor
contractions may lead to the enumeration of covers of nonorientable
manifolds?

Lexcept purely U case (r, g = 0) was reported before [Ben Geloun, Ramgoolam 2013] and

also (r =2,q = 1) case was reported in [Bulycheva, Klebanov, Milekhin Tarnopolsky 2017].
2Remark that our formulation cannot be reduced to purely O case which was studied before
[Avohou, Ben Geloun,Dub 2022].



Take home messages

The counting of tensor invariants, in addition to their essential role in the per-
tubative analysis of tensor models in theoretical physics, reveals unexpected
connections between combinatorics, algebra, and topology.

What is intriguing is the connection between tensor models and branched covers
of the 2-sphere suggests that two dimensional holomorphic maps know about
higher dimensional combinatorial topology.




