Matrix Models for Matter on Random Geometries with Causal Constraints

#### Juan L. A. Abranches

with Antonio D. Pereira and Reiko Toriumi

Okinawa Institute of Science and Technology - Okinawa, Japan

2024 October 2

Random tensors and related topics - IHP 2024

# Main aspects

| Matrix Models       | Zero-dimensional QFT of random matrices.<br>Ribbon graphs as Feynman graphs.                                                                                                          | $Z = \int \prod_{i,j} dA_{ij} \ e^{-S[A]}$ |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Ribbon Graphs       | Vertices and edges are topological discs.<br>Disks intersect at disjoint line segments.<br>Each segment borders one vertex and one edge.<br>Each edge has two segments in its border. |                                            |
| Matter Interaction  | Ising model.<br>Vertices represent matter.<br>Edges represent matter interaction.                                                                                                     |                                            |
| 2D Causal Structure | Causal dynamical triangulations.<br>Only topologies with time foliation.<br>No spatial topology change.                                                                               | XHIH                                       |
| 2D Quantum Gravity  | Ising model & causal dynamical triangulations.<br>Interaction between matter and spacetime.                                                                                           | XARA                                       |

• Implementing the causality constraint at the level of a matrix model is a first step towards its implementation in tensor models.

- We defined and studied a matrix model that describes the Ising Model coupled to the Causal Dynamical Triangulations (CDT).
- We revisited a problem that appeared on the CDT Matrix Model, which is finding the Gaussian average of the character of the square of Hermitian matrices.
- The inclusion of the Ising model produces a multi-matrix model which allows us to explore the impact of the dynamical (and causal) lattice to the Ising model and vice-versa.

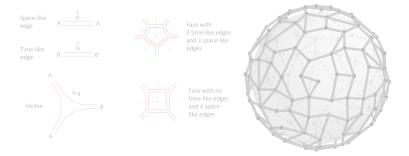
- Implementing the causality constraint at the level of a matrix model is a first step towards its implementation in tensor models.
- We defined and studied a matrix model that describes the Ising Model coupled to the Causal Dynamical Triangulations (CDT).
- We revisited a problem that appeared on the CDT Matrix Model, which is finding the Gaussian average of the character of the square of Hermitian matrices.
- The inclusion of the Ising model produces a multi-matrix model which allows us to explore the impact of the dynamical (and causal) lattice to the Ising model and vice-versa.

- Implementing the causality constraint at the level of a matrix model is a first step towards its implementation in tensor models.
- We defined and studied a matrix model that describes the Ising Model coupled to the Causal Dynamical Triangulations (CDT).
- We revisited a problem that appeared on the CDT Matrix Model, which is finding the Gaussian average of the character of the square of Hermitian matrices.
- The inclusion of the Ising model produces a multi-matrix model which allows us to explore the impact of the dynamical (and causal) lattice to the Ising model and vice-versa.

- Implementing the causality constraint at the level of a matrix model is a first step towards its implementation in tensor models.
- We defined and studied a matrix model that describes the Ising Model coupled to the Causal Dynamical Triangulations (CDT).
- We revisited a problem that appeared on the CDT Matrix Model, which is finding the Gaussian average of the character of the square of Hermitian matrices.
- The inclusion of the Ising model produces a multi-matrix model which allows us to explore the impact of the dynamical (and causal) lattice to the Ising model and vice-versa.

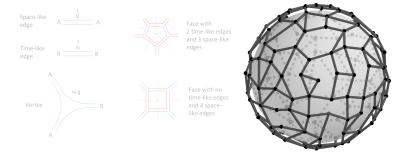
• The CDT graphs can be generated by a combinatorial analysis of the partition function:

$$Z = \int dAdB \ e^{-S_{CDT}} \ , \qquad \text{where} \qquad S_{CDT} = N \ \text{Tr} \left[ \frac{1}{2} A^2 + \frac{1}{2} \left( C_2^{-1} B \right)^2 - g A^2 B \right]$$



• The CDT graphs can be generated by a combinatorial analysis of the partition function:

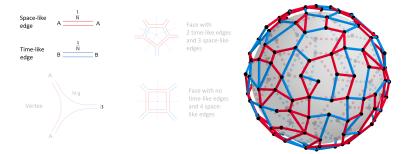
$$Z = \int dAdB \ e^{-S_{CDT}} \ , \qquad {
m where} \qquad S_{CDT} = N \ {
m Tr} \left[ rac{1}{2} A^2 + rac{1}{2} \left( C_2^{-1} B 
ight)^2 - g A^2 B 
ight]$$



• The CDT graphs can be generated by a combinatorial analysis of the partition function:

$$Z = \int dAdB \ e^{-S_{CDT}}$$
, where  $S_{CDT} = N \operatorname{Tr}\left[\frac{1}{2}A^2 + \frac{1}{2}\left(C_2^{-1}B\right)^2 - gA^2B\right]$ 

A and B:  $N \times N$  Hermitian matrices.  $C_2$ :  $N \times N$  matrix.  $\operatorname{Tr} C_2^p = N \delta_{p,2}$ .

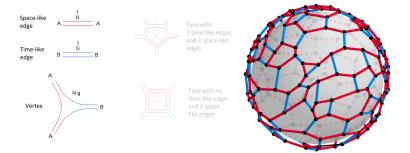


4

• The CDT graphs can be generated by a combinatorial analysis of the partition function:

$$Z = \int dAdB \ e^{-S_{CDT}}$$
, where  $S_{CDT} = N \operatorname{Tr}\left[\frac{1}{2}A^2 + \frac{1}{2}\left(C_2^{-1}B\right)^2 - gA^2B\right]$ 

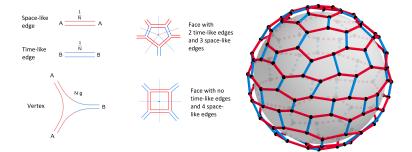
A and B:  $N \times N$  Hermitian matrices.  $C_2$ :  $N \times N$  matrix.  $\operatorname{Tr} C_2^p = N \delta_{p,2}$ .



4

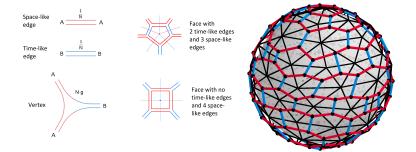
• The CDT graphs can be generated by a combinatorial analysis of the partition function:

$$Z = \int dAdB \ e^{-S_{CDT}} \ , \qquad \text{where} \qquad S_{CDT} = N \ \text{Tr} \left[ \frac{1}{2} A^2 + \frac{1}{2} \left( C_2^{-1} B \right)^2 - g A^2 B \right]$$



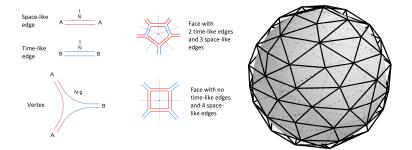
• The CDT graphs can be generated by a combinatorial analysis of the partition function:

$$Z = \int dAdB \ e^{-S_{CDT}} \ , \qquad \text{where} \qquad S_{CDT} = N \ \text{Tr} \left[ \frac{1}{2} A^2 + \frac{1}{2} \left( C_2^{-1} B \right)^2 - g A^2 B \right]$$



• The CDT graphs can be generated by a combinatorial analysis of the partition function:

$$Z = \int dAdB \ e^{-S_{CDT}} \ , \qquad \text{where} \qquad S_{CDT} = N \ \text{Tr} \left[ \frac{1}{2} A^2 + \frac{1}{2} \left( C_2^{-1} B \right)^2 - g A^2 B \right]$$



- Many integration methods are unsuitable due to the presence of the matrix C<sub>2</sub>. We can factorize this matrix from the partition function with the use of character expansion. [D. Benedetti, J. Henson, 2009]
- Class functions can be expanded in terms of matrix characters, together with a sum over representations of *GL*(*N*).

$$Z = \int dA \ e^{-N \text{Tr} \left[ \frac{1}{2} A^2 - \frac{g^2}{2} (C_2 A^2)^2 \right]}, \quad \text{where} \quad e^{\text{Tr} M^2} = \sum_r a_r \ \chi_r(M).$$

- Due to the character expansion, an integral with unknown solution appears in the calculation: The average of the character of the square of a matrix.
- Exact result which we can evaluate in terms of a Pfaffian of summations:

Finite N result [J. L. A. Abranches, A. D. Pereira, R. Toriumi, 2024]  

$$\langle \chi_r(A^2) \rangle_0 = \frac{N^{\frac{N(N-1)}{2}}}{\prod_{m=0}^{N-1} m!} \frac{\prod_n (2h_n)!}{(2N)^{\sum_p h_p}} \Pr_{i,j} \left( \sum_{\substack{k+l=2h_i \\ u+v=2h_j}} \frac{(-1)^u - (-1)^k}{2} \frac{(k+u)!!(l+v-2)!!}{k!u!l!v!} \right)$$

where  $\langle Q \rangle_0 = Z^{-1} \int dA Q e^{-S[A]}$  and  $h_1, ..., h_N$  is the set of integers defining r.

- Many integration methods are unsuitable due to the presence of the matrix C<sub>2</sub>. We can factorize this matrix from the partition function with the use of character expansion. [D. Benedetti, J. Henson, 2009]
- Class functions can be expanded in terms of matrix characters, together with a sum over representations of GL(N).

$$Z = \int dA \ e^{-N \operatorname{Tr} \left[ \frac{1}{2} A^2 - \frac{g^2}{2} (C_2 A^2)^2 \right]}, \quad \text{where} \quad e^{\operatorname{Tr} M^2} = \sum_r a_r \ \chi_r(M).$$

- Due to the character expansion, an integral with unknown solution appears in the calculation: The average of the character of the square of a matrix.
- Exact result which we can evaluate in terms of a Pfaffian of summations:

Finite *N* result [J. L. A. Abranches, A. D. Pereira, R. Toriumi, 2024]  

$$\langle \chi_r(A^2) \rangle_0 = \frac{N^{\frac{N(N-1)}{2}}}{\prod_{m=0}^{N-1} m!} \frac{\prod_n (2h_n)!}{(2N)^{\sum_{\rho} h_{\rho}}} \Pr_{i,j} \left( \sum_{\substack{k+l=2h_i \\ u+v=2h_j}} \frac{(-1)^u - (-1)^k}{2} \frac{(k+u)!!(l+v-2)!!}{k!u!l!v!} \right)$$

where  $\langle Q \rangle_0 = Z^{-1} \int dA Q e^{-S[A]}$  and  $h_1, ..., h_N$  is the set of integers defining r.

- Many integration methods are unsuitable due to the presence of the matrix C<sub>2</sub>. We can factorize this matrix from the partition function with the use of character expansion. [D. Benedetti, J. Henson, 2009]
- Class functions can be expanded in terms of matrix characters, together with a sum over representations of GL(N).

$$Z = \int dA \ e^{-N \operatorname{Tr} \left[ \frac{1}{2} A^2 - \frac{g^2}{2} (C_2 A^2)^2 \right]}, \quad \text{where} \quad e^{\operatorname{Tr} M^2} = \sum_r a_r \ \chi_r(M).$$

- Due to the character expansion, an integral with unknown solution appears in the calculation: The average of the character of the square of a matrix.
- Exact result which we can evaluate in terms of a Pfaffian of summations:

Finite *N* result [J. L. A. Abranches, A. D. Pereira, R. Toriumi, 2024]  

$$\langle \chi_r(A^2) \rangle_0 = \frac{N^{\frac{N(N-1)}{2}}}{\prod_{m=0}^{N-1} m!} \frac{\prod_n (2h_n)!}{(2N)^{\sum_p h_p}} \Pr_{i,j} \left( \sum_{\substack{k+l=2h_i \\ u+v=2h_j}} \frac{(-1)^u - (-1)^k}{2} \frac{(k+u)!!(l+v-2)!!}{k!u!l!v!} \right)$$

where  $\langle Q \rangle_0 = Z^{-1} \int dA Q e^{-S[A]}$  and  $h_1, ..., h_N$  is the set of integers defining r.

- Many integration methods are unsuitable due to the presence of the matrix C<sub>2</sub>. We can factorize this matrix from the partition function with the use of character expansion. [D. Benedetti, J. Henson, 2009]
- Class functions can be expanded in terms of matrix characters, together with a sum over representations of GL(N).

$$Z = \int dA \ e^{-N \operatorname{Tr} \left[ \frac{1}{2} A^2 - \frac{g^2}{2} (C_2 A^2)^2 \right]}, \quad \text{where} \quad e^{\operatorname{Tr} M^2} = \sum_r a_r \ \chi_r(M).$$

- Due to the character expansion, an integral with unknown solution appears in the calculation: The average of the character of the square of a matrix.
- Exact result which we can evaluate in terms of a Pfaffian of summations:

Finite N result [J. L. A. Abranches, A. D. Pereira, R. Toriumi, 2024]  

$$\langle \chi_r(A^2) \rangle_0 = \frac{N^{\frac{N(N-1)}{2}}}{\prod_{m=0}^{N-1} m!} \frac{\prod_n (2h_n)!}{(2N)^{\sum_p h_p}} \prod_{i,j} \left( \sum_{\substack{k+l=2h_i \\ u+v=2h_j}} \frac{(-1)^u - (-1)^k}{2} \frac{(k+u)!!(l+v-2)!!}{k!u!!v!} \right)$$

where  $\langle Q \rangle_0 = Z^{-1} \int dA \, Q \, e^{-S[A]}$  and  $h_1, ..., h_N$  is the set of integers defining r.

• Partition function and C<sub>2</sub>:

$$Z = \int dA \ e^{-N \operatorname{Tr} \left[ \frac{1}{2} A^2 - \frac{g^2}{2} (C_2 A^2)^2 \right]} \quad \text{with} \quad \operatorname{Tr} C_2^p = N \delta_{2,p}.$$

For each p = 1, ..., N, we have an equation on the eigenvalues of  $C_2$ .

- Using the Girard–Newton formulae, we find the characteristic polynomial.
- For even *N*, the *N* eigenvalues are given by

Large *N* result [J. L. A. Abranches, A. D. Pereira, R. Toriumi, 2024]  $\lambda_t^{\pm} = \pm \left[ W(-e^{\frac{4\pi}{N}i(t-1/2)-1}) \right]^{-\frac{1}{2}}, \qquad t = 1, 2, ..., N/2.$ 

W(z) is the Lambert function.

For N odd, the roots are the same as for N - 1, plus 0 as an additional root.

• Partition function and C<sub>2</sub>:

$$Z = \int dA \ e^{-N \operatorname{Tr} \left[ \frac{1}{2} A^2 - \frac{g^2}{2} (C_2 A^2)^2 \right]} \qquad \text{with} \qquad \operatorname{Tr} C_2^p = N \delta_{2,p}.$$

For each p = 1, ..., N, we have an equation on the eigenvalues of  $C_2$ .

- Using the Girard–Newton formulae, we find the characteristic polynomial.
- For even *N*, the *N* eigenvalues are given by

Large *N* result [J. L. A. Abranches, A. D. Pereira, R. Toriumi, 2024]  $\lambda_t^{\pm} = \pm \left[ W(-e^{\frac{4\pi}{N}i(t-1/2)-1}) \right]^{-\frac{1}{2}}, \qquad t = 1, 2, ..., N/2.$ 

W(z) is the Lambert function.

For N odd, the roots are the same as for N - 1, plus 0 as an additional root.

• Partition function and C<sub>2</sub>:

$$Z = \int dA \ e^{-N \operatorname{Tr} \left[ \frac{1}{2} A^2 - \frac{g^2}{2} (C_2 A^2)^2 \right]} \qquad \text{with} \qquad \operatorname{Tr} C_2^p = N \delta_{2,p} \,.$$

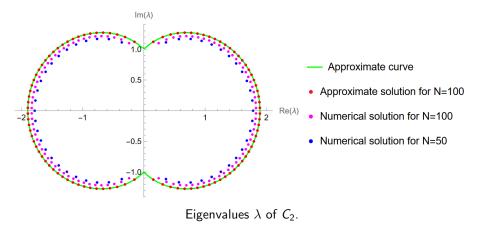
For each p = 1, ..., N, we have an equation on the eigenvalues of  $C_2$ .

- Using the Girard–Newton formulae, we find the characteristic polynomial.
- For even N, the N eigenvalues are given by

Large *N* result [J. L. A. Abranches, A. D. Pereira, R. Toriumi, 2024]  $\lambda_t^{\pm} = \pm \left[ W(-e^{\frac{4\pi}{N}i(t-1/2)-1}) \right]^{-\frac{1}{2}}, \qquad t = 1, 2, ..., N/2.$ 

W(z) is the Lambert function.

For N odd, the roots are the same as for N - 1, plus 0 as an additional root.

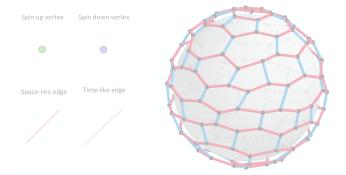


## CDT with Ising Model

Action for CDT coupled with the Ising Model over the vertices:

$$\begin{split} S_{CDTIM} &= N \, \mathrm{Tr} \left[ \frac{1}{2} A_{+}^{2} + \frac{1}{2} \left( C_{2}^{-1} B_{+} \right)^{2} + \frac{1}{2} A_{-}^{2} + \frac{1}{2} \left( C_{2}^{-1} B_{-} \right)^{2} \right. \\ & \left. - \gamma A_{+} A_{-} - \gamma (C_{2}^{-1} B_{+}) (C_{2}^{-1} B_{-}) - g A_{+}^{2} B_{+} - g A_{-}^{2} B_{-} \right], \end{split}$$

 $A_{\pm}$ ,  $B_{\pm}$ :  $N \times N$  Hermitian matrices.  $C_2$ :  $N \times N$  matrix,  $\operatorname{Tr} C_2^p = N \delta_{p,2}$ .

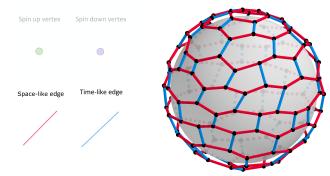


## CDT with Ising Model

Action for CDT coupled with the Ising Model over the vertices:

$$\begin{split} S_{CDTIM} &= N \, \mathrm{Tr} \left[ \frac{1}{2} A_{+}^{2} + \frac{1}{2} \left( C_{2}^{-1} B_{+} \right)^{2} + \frac{1}{2} A_{-}^{2} + \frac{1}{2} \left( C_{2}^{-1} B_{-} \right)^{2} \right. \\ & \left. - \gamma A_{+} A_{-} - \gamma (C_{2}^{-1} B_{+}) (C_{2}^{-1} B_{-}) - g A_{+}^{2} B_{+} - g A_{-}^{2} B_{-} \right], \end{split}$$

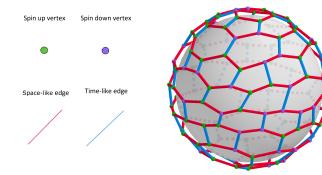
 $A_{\pm}$ ,  $B_{\pm}$ :  $N \times N$  Hermitian matrices.  $C_2$ :  $N \times N$  matrix,  $\operatorname{Tr} C_2^p = N \delta_{p,2}$ .



## CDT with Ising Model

Action for CDT coupled with the Ising Model over the vertices:

$$\begin{split} S_{CDTIM} &= N \, \mathrm{Tr} \left[ \frac{1}{2} A_{+}^{2} + \frac{1}{2} \left( C_{2}^{-1} B_{+} \right)^{2} + \frac{1}{2} A_{-}^{2} + \frac{1}{2} \left( C_{2}^{-1} B_{-} \right)^{2} \right. \\ &\left. - \gamma A_{+} A_{-} - \gamma (C_{2}^{-1} B_{+}) (C_{2}^{-1} B_{-}) - g A_{+}^{2} B_{+} - g A_{-}^{2} B_{-} \right], \end{split}$$



• Some of the integrals in the partition function can easily be solved, leading to

$$Z = \int dU dV \ e^{-N \operatorname{Tr}[\frac{1}{2}(1-\gamma)U^2 + \frac{1}{2}(1+\gamma)V^2 - \frac{1}{4}\frac{g^2}{1-\gamma}((U^2+V^2)C_2)^2 - \frac{1}{4}\frac{g^2}{1+\gamma}((UV+VU)C_2)^2]}$$

#### Similarly to the pure CDT, we apply the character expansion.

• The integral over the angular part between U and V can be written as

$$I = \int_{U(N)} \phi^{\alpha}_{ab}(\Omega) \phi^{\beta}_{cd}(\Omega) \overline{\phi^{\alpha}_{\bar{a}\bar{b}}(\Omega)} \phi^{\beta}_{\bar{c}\bar{d}}(\Omega) d\Omega, \quad \text{with} \quad \Omega \in U(N)$$

where  $\phi_{ij}^r(\Omega)$  are the matrix coefficients of  $\Omega$  in a representation r. We use Weingarten Calculus to compute this integral.

• Expanding  $\alpha \otimes \beta$  into irreducible representations r, the Clebsch-Gordan coefficients  $c_{acp}^{rk}$  appear.

Integral's result [J. L. A. Abranches, A. D. Pereira, R. Toriumi, 2024]  
$$I = \sum_{r,m,n,p,q} c_{acp}^{rm*} c_{\bar{a}\bar{c}p}^{rm} c_{bdq}^{rm*} c_{\bar{b}\bar{d}q}^{rm*} d_r^{-1},$$

where  $d_r$  is the dimension of the representation r.

• Some of the integrals in the partition function can easily be solved, leading to

$$Z = \int dU dV \ e^{-N \operatorname{Tr}[\frac{1}{2}(1-\gamma)U^2 + \frac{1}{2}(1+\gamma)V^2 - \frac{1}{4}\frac{g^2}{1-\gamma}((U^2+V^2)C_2)^2 - \frac{1}{4}\frac{g^2}{1+\gamma}((UV+VU)C_2)^2]}$$

Similarly to the pure CDT, we apply the character expansion.

• The integral over the angular part between U and V can be written as

$$I = \int_{U(N)} \phi^{\alpha}_{ab}(\Omega) \phi^{\beta}_{cd}(\Omega) \overline{\phi^{\alpha}_{\bar{a}\bar{b}}(\Omega)} \phi^{\beta}_{\bar{c}\bar{d}}(\Omega) d\Omega, \quad \text{with} \quad \Omega \in U(N),$$

where  $\phi_{ij}^r(\Omega)$  are the matrix coefficients of  $\Omega$  in a representation r. We use Weingarten Calculus to compute this integral.

• Expanding  $\alpha \otimes \beta$  into irreducible representations r, the Clebsch-Gordan coefficients  $c_{acp}^{rk}$  appear.

Integral's result [J. L. A. Abranches, A. D. Pereira, R. Toriumi, 2024]  
$$I = \sum_{r,m,n,p,q} c_{acp}^{rm*} c_{\bar{a}\bar{c}p}^{rm} c_{b\bar{d}q}^{rm*} d_r^{-1},$$

where  $d_r$  is the dimension of the representation r.

• Some of the integrals in the partition function can easily be solved, leading to

$$Z = \int dU dV \ e^{-N \operatorname{Tr}[\frac{1}{2}(1-\gamma)U^2 + \frac{1}{2}(1+\gamma)V^2 - \frac{1}{4}\frac{g^2}{1-\gamma}((U^2+V^2)C_2)^2 - \frac{1}{4}\frac{g^2}{1+\gamma}((UV+VU)C_2)^2]}$$

Similarly to the pure CDT, we apply the character expansion.

• The integral over the angular part between U and V can be written as

$$I = \int_{U(N)} \phi^{\alpha}_{ab}(\Omega) \phi^{\beta}_{cd}(\Omega) \overline{\phi^{\alpha}_{\bar{a}\bar{b}}(\Omega)} \phi^{\beta}_{\bar{c}\bar{d}}(\Omega) d\Omega, \quad \text{with} \quad \Omega \in U(N),$$

where  $\phi_{ij}^r(\Omega)$  are the matrix coefficients of  $\Omega$  in a representation r. We use Weingarten Calculus to compute this integral.

• Expanding  $\alpha \otimes \beta$  into irreducible representations r, the Clebsch-Gordan coefficients  $c_{acp}^{rk}$  appear.



where  $d_r$  is the dimension of the representation r.

• Some of the integrals in the partition function can easily be solved, leading to

$$Z = \int dU dV \ e^{-N \operatorname{Tr}[\frac{1}{2}(1-\gamma)U^2 + \frac{1}{2}(1+\gamma)V^2 - \frac{1}{4}\frac{g^2}{1-\gamma}((U^2+V^2)C_2)^2 - \frac{1}{4}\frac{g^2}{1+\gamma}((UV+VU)C_2)^2]}$$

Similarly to the pure CDT, we apply the character expansion.

• The integral over the angular part between U and V can be written as

$$I = \int_{U(N)} \phi^{\alpha}_{ab}(\Omega) \phi^{\beta}_{cd}(\Omega) \overline{\phi^{\alpha}_{\bar{a}\bar{b}}(\Omega)} \phi^{\beta}_{\bar{c}\bar{d}}(\Omega) d\Omega, \quad \text{with} \quad \Omega \in U(N),$$

where  $\phi_{ij}^r(\Omega)$  are the matrix coefficients of  $\Omega$  in a representation r. We use Weingarten Calculus to compute this integral.

• Expanding  $\alpha \otimes \beta$  into irreducible representations r, the Clebsch-Gordan coefficients  $c_{acp}^{rk}$  appear.

Integral's result [J. L. A. Abranches, A. D. Pereira, R. Toriumi, 2024]  
$$I = \sum_{r,m,n,p,q} c_{acp}^{rm*} c_{\bar{a}\bar{c}p}^{rm} c_{bdq}^{rm*} d_r^{m*} d_r^{-1} ,$$

where  $d_r$  is the dimension of the representation r.

Thank you!