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Main aspects

Zero-dimensional QFT of random matrices. 7= /Hd_l e=SAl
- 0]
Ribbon graphs as Feynman graphs. Y

Vertices and edges are topological discs.
Disks intersect at disjoint line segments. :
Each segment borders one vertex and one edge. ,

Each edge has two segments in its border.

Ising model.
Vertices represent matter.

Edges represent matter interaction.

Causal dynamical triangulations.
Only topologies with time foliation.

No spatial topology change.

Ising model & causal dynamical triangulations. z

A e

Interaction between matter and spacetime.
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Outline

@ Implementing the causality constraint at the level of a matrix model is a first step
towards its implementation in tensor models.
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Outline

@ Implementing the causality constraint at the level of a matrix model is a first step
towards its implementation in tensor models.

@ We defined and studied a matrix model that describes the Ising Model coupled to
the Causal Dynamical Triangulations (CDT).

@ We revisited a problem that appeared on the CDT Matrix Model, which is finding
the Gaussian average of the character of the square of Hermitian matrices.

@ The inclusion of the Ising model produces a multi-matrix model which allows us to
explore the impact of the dynamical (and causal) lattice to the Ising model and
vice-versa.
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Matrix Model for the CDT Model [D. Benedetti, J. Henson, 2009]

@ The CDT graphs can be generated by a combinatorial analysis of the partition
function:

2
Z= /dAdB e 5T | where  Scpr = NTr BA2 n % (c;ls) - gAZB} .

A and B: N x N Hermitian matrices.
G N x N matrix. TrC} = Ndp 2.
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Matrix Model for the CDT Model [D. Benedetti, J. Henson, 2009]

@ The CDT graphs can be generated by a combinatorial analysis of the partition

function:
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Evaluation of {x,(A?))o

@ Many integration methods are unsuitable due to the presence of the matrix G,.
We can factorize this matrix from the partition function with the use of character
expansion. [D. Benedetti, J. Henson, 2009]
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Evaluation of {x,(A?))o

@ Many integration methods are unsuitable due to the presence of the matrix G,.
We can factorize this matrix from the partition function with the use of character
expansion. [D. Benedetti, J. Henson, 2009]

@ Class functions can be expanded in terms of matrix characters, together with a
sum over representations of GL(N).

—NTr[lAz—i(czA2)2] TeM2
Z:/dAe 2 2 , where e’ :Zar xr(M).

@ Due to the character expansion, an integral with unknown solution appears in the
calculation: The average of the character of the square of a matrix.

@ Exact result which we can evaluate in terms of a Pfaffian of summations:

Finite N result [J. L. A. Abranches, A. D. Pereira, R. Toriumi, 2024]

N(N—1)
Nz [L,(2h)! (=1)" = (=D (k + w)!1(/ + v — 21!
(xr(A2))o = 7L ml ()= o Pf k+12=:2h,- 2 Klulliv!

u+v:2hj

where (Q)o = 7z 1 f dA Q e S and hi, ..., hy is the set of integers defining r.
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Computing the eigenvalues of G,

@ Partition function and G:
NTr|LA2— & (CA2)2
Z:/dAe e-g@er] TeCl = Nbap .

For each p =1, ..., N, we have an equation on the eigenvalues of G,.
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Computing the eigenvalues of G,

@ Partition function and G:
- /dA e_NTr[%Az_é(QAZ)z] with  TrCf = Noy,p .
For each p =1, ..., N, we have an equation on the eigenvalues of G,.
@ Using the Girard—Newton formulae, we find the characteristic polynomial.

@ For even N, the N eigenvalues are given by

Large N result [J. L. A. Abranches, A. D. Pereira, R. Toriumi, 2024]

A=+ [W( e T ilt=1/2— 1)] . t=1,2..,N/2.

W(z) is the Lambert function.
For N odd, the roots are the same as for N — 1, plus 0 as an additional root.
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Computing the eigenvalues of G,

—— Approximate curve

* Approximate solution for N=100

Re® 4 Numerical solution for N=100

o Numerical solution for N=50

Eigenvalues A of (.
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CDT with Ising Model

Action for CDT coupled with the Ising Model over the vertices:
1 1 _ 21 1 _ 2
Scorm = N Tr [EAi +5 (c2 1B+) +5A +5 (C2 13_)

—YALAL —(GTIB)(GTIBL) — gALB, — gAX B,] ,

Ay, BL: N x N Hermitian matrices.
G o N x N matrix, TrC) = Ndp».
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Action for CDT coupled with the Ising Model over the vertices:
- 1, 1 -1 2.1 5 1 1 2
Scotim = NTr[2A+ +5 (Cz B+) + 2A, +t5 (C2 B—)
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Ay, BL: N x N Hermitian matrices.
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CDT with Ising Model

Action for CDT coupled with the Ising Model over the vertices:
1 1 _ 21 1 _ 2
SCDT/M = N TI'|:§A§, + 5 (C2 IB+) + §A2, + 5 (C2 18_)
CYAAL —A(GB)(G B — g2 B, — gh B,] ,
Ay, BL: N x N Hermitian matrices.
G o N x N matrix, TrC) = Ndp».

Spin up vertex Spin down vertex

Space-like edge  Time-like edge
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Integral over the unitary group

@ Some of the integrals in the partition function can easily be solved, leading to

7_ /dUdV o NI AU+ 4) V2 } S (PHV2) 6P £ (VWGP

Similarly to the pure CDT, we apply the character expansion.
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where ¢7;(£2) are the matrix coefficients of Q in a representation r. We use
Weingarten Calculus to compute this integral.

@ Expanding a ® 3 into irreducible representations r, the Clebsch-Gordan coefficients
rk
Chep Appear.

Integral’s result [J. L. A. Abranches, A. D. Pereira, R. Toriumi, 2024]

rmx _rn_rm _rnx j—1
I = E Cacp CEEpdeqCEJqdr )

r,m,n,p,q

where d; is the dimension of the representation r.
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Thank you!
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	Revisiting the CDT-like Matrix Model (without Ising Model)

