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 §Introduction
Eigenvalue distributions are important in random matrix models

• Approximate Hamiltonian of atoms (Wigner 1958)

：Random matrixH

ρ

E
Semi-circle law

• Method of computing matrix models

Brezin-Itzykson-Parisi-Zuber 1978

• Topological transition — Dynamics of QCD

Gross-Witten, Wadia, 1980
θ

ρ

θ

ρ



Most tensor problems are NP-hard for a tensor.  Hillar-Lim 2009

On the other hand, a distribution of tensor eigenvalues for an 
ensemble of tensors can exactly/approximately computed, as we 
will do by using quantum field theories

ρ • Ground state energy of spin glass
• Largest eigenvalue
• Best rank-one decomposition of tensor
• Geometric measure of entanglement of 

multipartite states

How about tensor eigenvalue distributions ?

|v |

In  a sharp edge of the distribution appears, which is 
important, since it determines the “best” value in applications. 

N → ∞



§Geometric measure of entanglement of multipartite states

|ψ⟩ = Mab |a⟩A |b⟩B• Bipartite state |a⟩A ∈ HA |b⟩B ∈ HB

S = − TrA(ΩA log ΩA) = − TrB(ΩB log ΩB)
ΩA = TrB( |ψ⟩⟨ψ | )
ΩB = TrA( |ψ⟩⟨ψ | )

Entanglement entropy

• Tripartite state

|ψ⟩ = Cabc |a⟩A |b⟩B |c⟩C |a⟩A ∈ HA |b⟩B ∈ HB |c⟩C ∈ HC

Generally,
−TrA(ΩA log ΩA) ≠ − TrB(ΩB log ΩB)

ΩA = TrBC( |ψ⟩⟨ψ | )
ΩB = TrAC( |ψ⟩⟨ψ | )

How can we measure entanglement of multipartite states ?



ed( |ψ⟩) = min
ψA,B,C

|ψ⟩ − |ψA⟩A ⊗ |ψB⟩B ⊗ |ψC⟩C

|ψ⟩ ed( |ψ⟩)
Orbit of product states

|ψA⟩A ⊗ |ψB⟩B ⊗ |ψC⟩C

The amount of entanglement may be measured by the minimum 
distance from product states.

Shimony 1995, Barnum-Linden 2001, Wei-Goldbart 2003

Ex. Tripartite states

§Geometric measure of entanglement of multipartite states



∂ ed( |ψ⟩)
∂v(A,B,C)

a,b,c
= 0

C*abcv
(B)
b v(C)

c = v(A)*
a

C*abcv
(A)
a v(C)

c = v(B)*
b

C*abcv
(A)
a v(B)

b = v(C)*
c

Representation in tensor

|ψC⟩C = v(C)
c |c⟩C

|ψA⟩A = v(A)
a |a⟩A

|ψB⟩B = v(B)
b |b⟩B

A system of eigenvector equations

ed( ) is determined by the eigenvector of smallest .
→The edge of the eigenvector distribution determines the 
geometric measure of entanglement of random multipartite states.

|ψ⟩ |v | = |vi |

|ψ⟩ = Cabc |a⟩A ⊗ |b⟩B ⊗ |c⟩C

ed( |ψ⟩)2 = min
ψA,B,C

|ψ⟩ − |ψA⟩A ⊗ |ψB⟩B ⊗ |ψC⟩C
2

= 2 − 2 max
v(A,B,C)

a,b,c

Re[C*abcv
(A)
a v(B)

b v(C)
c ]

Injective norm

|C |2 = |v(A,B,C) |2 = 1



§ Complex eigenvector problems
S. Majumder, NS, PTEP 2024 (2024) 9, 093A01, arXiv:2408.01030 [hep-th]
NS, PTEP 2024 (2024) 5, 053A04, arXiv:2404.03385 [hep-th]

We compute the distributions of eigenvectors of complex order-
three random tensors with symmetric or independent indices.

• Symmetric

  (  : arbitrary perms. of )Cabc = Cσaσbσc
, va ∈ ℂ σ a, b, c

Corresponds to |ψ⟩ = Cabc |a⟩ ⊗ |b⟩ ⊗ |c⟩
C*abcvbvc = v*a

• Independent indices
C*abcv

(B)
b v(C)

c = v(A)*
a

C*abcv
(A)
a v(C)

c = v(B)*
b

C*abcv
(A)
a v(B)

b = v(C)*
c

: A system of eigenvector equations

Corresponds to |ψ⟩ = Cabc |a⟩A ⊗ |b⟩B ⊗ |c⟩C

Cabc, v(A)
a , v(b)

b , v(C)
c ∈ ℂ

: Eigenvector equation



§ Field theoretical method

General form of the problem
fi(v, C) = 0 i = 1,2,⋯, #v

Number of d.o.f. of v

cf. A. Crisanti, L. Leuzzi, and T. Rizzo, Eur. Phys. J. B 36, 129-136 (2003)

: linear in C

ρ(v) = ∫ dC e−αC*abcCabc | det M(v, C) |
#v

∏
i=1

δ( fi(v, C))

det M = ∫ dψ̄dψ eψ̄ M ψ| det M |

Eigenvector distribution for a Gaussian ensemble of the tensor C

Signed eigenvector distribution   easier to compute

After integrating over C

ρsigned(v) = 𝒩′￼∫ dψ̄dψ eSff  : Four-fermi actionSff

 : Fermions onlyψ̄, ψ

M(v, C)ij =
∂fj
∂vi

JacobianBosons + Fermions



• Symmetric indices case

Sff = ψ̄ ⋅ ψ + φ̄ ⋅ φ +
2 |v |2

3α (ψ̄ ⋅ φ φ̄ ⋅ ψ − ψ̄ ⋅ ψ φ̄ ⋅ φ)+parallel to v, v*

• Independent indices case

Sff =
3

∑
i=1

(ψ̄i ⋅ ψi + φ̄i ⋅ φi) +
|v |2

α

3

∑
i<j

(ψ̄iφj + ψ̄jφi) ⋅ (φ̄iψj + φ̄jψi)

The partition function of these four-fermi theories can exactly be 
computed by using the following type of manipulations:

eg ψ̄⋅ψ φ̄⋅φ = eg ∂
∂k1

∂
∂k2 ek1 ψ̄⋅ψ+k2 φ̄⋅φ

k1=k2=0

Four-fermi actions

+parallel to v, v*



Exact closed-form expressions are given in terms of generating 
functions.

• Symmetric indices case

ρsigned( |v |2 ) = − 3NαN |v |−2N−2 e− α
|v |2 (1 + g l)−2exp ( l

1 + g l )
lN−1

g = 2 |v |2 /(3α)

• Independent indices case

ρsigned( |v |2 ) = − α |v |−4 e− α
|v |2 (1 − t2 + 2t3)−2exp ( t1 − 2t2 + 3t3

g(1 − t2 + 2t3) )
∏3

i=1 lNi−1
i

 : dimension of -th indexNi ig = |v |2 /α

Taking the -th orderlN−1

t1 = l1 + l2 + l3
t2 = l1l2 + l2l3 + l3l2
t3 = l1l2l3



Location of edge can be derived from the signed distribution
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Large N asymptotic forms of the genuine and signed distributions are 
expressed by the same function , and hence have a common edge. h

M.R. Kloos, NS, Lett.Math.Phys. 114 (2024) 3, 80, arXiv:2403.12427 [hep-th]

Ex. Real eigenvector distribution of real symmetric random tensor

ρ(v) ∼ eN Re[h(v)]

ρsigend(v) ∼ Re[eN h(v)]
h(vedge) = 0



In the current cases, the asymptotic forms in the large N limit can be 
extracted from the exact closed-form expressions. 

ρsigned( |v |2 ) ∼ Re[eN h(|v|)]

Symmetric indices case

|v |edge = 0.603501
α
N

The locations of the edges are computed by solving  h( |v |edge ) = 0

Independent indices case with Ni = N

|v |edge = 0.348431
α
N

Cabc ∼ N(0,1/ 2α) × (sym . fac.)



§Agreement with a pervious numerical study
K. Fitter, C. Lancien, I. Nechita, “Estimating the entanglement of 
random multipartite quantum states,” [arXiv:2209.11754 [quant-ph]]

Symmetric indices case

|C |inj = 1/ |v |edge = 2.34335 ( )α = N/2

FLN result = 2.356248

( |C |inj = max
|w|=1

Cabcwawbwc)

Independent indices case

|C |inj = 1/ |v |edge = 4.0588 ( )α = N/2

FLN result = 4.143529

Error~0.5%

Error~2%

( |C |inj = max
|wi|=1

Cabcw1
aw2

bw3
c )

The numbers can be regarded as being coincident, since the errors 
are smaller than the 4% for the established case (real case).



§Summary
As in matrix models, tensor eigenvalue/vector distributions may 
become important in various applications.  

The quantum field theoretical method is a powerful practical 
method of computing them. 

In particular signed distributions are the easiest but useful, and 
can be computed by four-fermi theory. 

We have computed the signed eigenvalue/vector distributions of 
complex random tensors, and have derived the asymptote of the 
geometric measure of quantum entanglement analytically for the 
first time. (cf. Dartois, McKenna, arXiv:2404.03627)

Future prospects
The study of tensor eigenvalue/vector distributions is rather 
new, and there will be more developments and applications.
There will be extensions, such as tensor rank decomposition, etc.



Thank you !
Merci !



§ Checked with Monte Carlo simulations

Symmetric indices case

Independent indices case (N1, N2, N3) = (3,2,2)

N = 5

ρ

−ρsigned

ρ

−ρsigned

The signed distribution agrees with the genuine distribution ! 


