Tensor freeness and central limit theorem

Sang-Jun Park ¹ joint work with Ion Nechita ¹

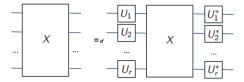
¹CNRS, LPT (Laboratoire de Physique Théorique) Toulouse

Random tensors, IHP, October 2nd, 2024

Overview

We consider random matrices $X = X_N \in M_N(\mathbb{C})^{\otimes r} \cong M_{N^r}(\mathbb{C})$ satisfying the local-unitary invariance (local-UI):

$$X =_d UXU^*, \quad \forall U = \bigotimes_{s=1}^r U_s \in \mathcal{U}_N^{\otimes r}.$$

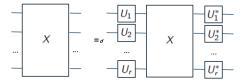


< A□ > < E

Overview

We consider random matrices $X = X_N \in M_N(\mathbb{C})^{\otimes r} \cong M_{N^r}(\mathbb{C})$ satisfying the local-unitary invariance (local-UI):

$$X =_d UXU^*, \quad \forall U = \bigotimes_{s=1}^r U_s \in \mathcal{U}_N^{\otimes r}.$$



Main question

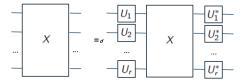
What can be expected about the convergences of local-UI random matrices in the limit $N \rightarrow \infty$? For example,

 X_N, Y_N : indep, local-UI, each having a limit $\implies \exists$ limit of $X_N + Y_N$?

Overview

We consider random matrices $X = X_N \in M_N(\mathbb{C})^{\otimes r} \cong M_{N^r}(\mathbb{C})$ satisfying the local-unitary invariance (local-UI):

$$X =_d UXU^*, \quad \forall U = \bigotimes_{s=1}^r U_s \in \mathcal{U}_N^{\otimes r}.$$



Main question

What can be expected about the convergences of local-UI random matrices in the limit $N \rightarrow \infty$? For example,

 X_N, Y_N : indep, local-UI, each having a limit $\implies \exists$ limit of $X_N + Y_N$?

→ Answered via "⊗-free probability"!

Motivation: Unitary invariance and asymptotic freeness

Theorem (Voiculescu 1991 & 1998; Collins 2003)

- $X_N^{(1)}, \ldots, X_N^{(L)}$: independent $N \times N$ random matrices such that • each $X_N^{(i)}$ is unitary invariant,
 - each $X_N^{(i)}$ converges in (non-commutative) distribution,
 - factorization property: for $i \in [L]$ and polynomials P_j , $\mathbb{E}[\operatorname{tr}(P_1(X_N^{(i)})) \cdots \operatorname{tr}(P_r(X_N^{(i)}))] = \prod_{j=1}^r \mathbb{E}[\operatorname{tr}(P_j(X_N^{(i)}))] + o(1).$

Then $X_N^{(1)}, \ldots X_N^{(L)}$ are asymptotically freely independent as $N \to \infty$.

Motivation: Unitary invariance and asymptotic freeness

Theorem (Voiculescu 1991 & 1998; Collins 2003)

- $X_N^{(1)}, \ldots, X_N^{(L)}$: independent $N \times N$ random matrices such that • each $X_N^{(i)}$ is unitary invariant,
 - each $X_N^{(i)}$ converges in (non-commutative) distribution,
 - factorization property: for $i \in [L]$ and polynomials P_j , $\mathbb{E}[\operatorname{tr}(P_1(X_N^{(i)})) \cdots \operatorname{tr}(P_r(X_N^{(i)}))] = \prod_{j=1}^r \mathbb{E}[\operatorname{tr}(P_j(X_N^{(i)}))] + o(1).$

Then $X_N^{(1)}, \ldots X_N^{(L)}$ are asymptotically freely independent as $N \to \infty$.

- The asymptotic freeness remains valid for
 - (Dykema 1993) Wigner matrices,
 - (Collins and Sniady 2006) Orthogonal invariant matrices.
- (Male 2020; Cebron, Dahlqvist, and Male 2024) Permutation invariant matrices and traffic independence.

Result: Local unitary invariance and ⊗-freeness

Theorem (Nechita and P., in progress)

- $X_N^{(1)}, \ldots, X_N^{(L)}$: independent families of $N^r \times N^r$ random matrices s.t.
 - each $X_N^{(i)}$ is local-unitary invariant,
 - each $X_N^{(i)}$ convergies in \otimes -distribution,
 - + "factorization property".

Then $X_N^{(1)}, \ldots X_N^{(L)}$ are asymptotically \otimes -freely independent as $N \to \infty$.

4/12

Result: Local unitary invariance and \otimes -freeness

Theorem (Nechita and P., in progress)

- $X_{N_1}^{(1)}, \ldots, X_{N_r}^{(L)}$: independent families of $N^r \times N^r$ random matrices s.t.
 - each $X_{M}^{(i)}$ is local-unitary invariant,
 - each $X_{N}^{(i)}$ convergies in \otimes -distribution,
 - + "factorization property".

Then $X_{N}^{(1)}, \ldots X_{N}^{(L)}$ are asymptotically \otimes -freely independent as $N \to \infty$.

• \otimes -distribution = data of $\left(\mathbb{E} \circ \operatorname{tr}_{\underline{\alpha}} := \frac{1}{N^{\#\alpha_1 + \dots + \#\alpha_r}} \mathbb{E} \circ \operatorname{Tr}_{\underline{\alpha}}\right)_{\alpha \in \bigcup_{n=1}^{\infty} (S_n)^r}$ for a family of random matrices $\mathcal{W}_N \subset M_{N'}(L^{\infty-}(\mathbb{P}))$.

$$\operatorname{Tr}_{(12)(3),(1)(23)}(X_1, X_2, X_3) =$$

\otimes -Free cumulants and \otimes -free independence

Definition (Nechita and P., in progress)

An (*r*-partite) algebraic \otimes -probability space is a triple ($\mathcal{A}, \varphi, (\varphi_{\underline{\alpha}})$) where

- \mathcal{A} is a unital algebra and $\varphi : \mathcal{A} \to \mathbb{C}$ is a unital linear functional,
- for each $p \ge 1$ and $\underline{\alpha} \in (S_p)^r$, $\varphi_{\underline{\alpha}} : \mathcal{A}^p \to \mathbb{C}$ is a multilinear functional satisfying "reasonable conditions".

\otimes -Free cumulants and \otimes -free independence

Definition (Nechita and P., in progress)

An (*r*-partite) algebraic \otimes -probability space is a triple $(\mathcal{A}, \varphi, (\varphi_{\underline{\alpha}}))$ where

- \mathcal{A} is a unital algebra and $\varphi : \mathcal{A} \to \mathbb{C}$ is a unital linear functional,
- for each $p \ge 1$ and $\underline{\alpha} \in (S_p)^r$, $\varphi_{\underline{\alpha}} : \mathcal{A}^p \to \mathbb{C}$ is a multilinear functional satisfying "reasonable conditions".

Definition (Nechita and P., in progress)

• Define \otimes -free cumulants $\kappa_{\underline{\alpha}} : \mathcal{A}^p \to \mathbb{C}$ for $\underline{\alpha} \in (S_p)^r$ by

$$\varphi_{\underline{\alpha}}(x_1,\ldots,x_p) = \sum_{\underline{\beta}: \ |\beta_s|+|\beta_s^{-1}\alpha_s|=|\alpha_s| \ \forall \ s} \kappa_{\underline{\beta}}(x_1,\ldots,x_p).$$

イロト イヨト イヨト

$\otimes\operatorname{-Free}$ cumulants and $\otimes\operatorname{-free}$ independence

Definition (Nechita and P., in progress)

An (r-partite) algebraic \otimes -probability space is a triple $(\mathcal{A}, \varphi, (\varphi_{\underline{\alpha}}))$ where

- \mathcal{A} is a unital algebra and $\varphi : \mathcal{A} \to \mathbb{C}$ is a unital linear functional,
- for each $p \ge 1$ and $\underline{\alpha} \in (S_p)^r$, $\varphi_{\underline{\alpha}} : \mathcal{A}^p \to \mathbb{C}$ is a multilinear functional satisfying "reasonable conditions".

Definition (Nechita and P., in progress)

• Define \otimes -free cumulants $\kappa_{\underline{\alpha}} : \mathcal{A}^p \to \mathbb{C}$ for $\underline{\alpha} \in (S_p)^r$ by

$$\varphi_{\underline{\alpha}}(x_1,\ldots,x_p) = \sum_{\underline{\beta}: \, |\beta_s| + |\beta_s^{-1}\alpha_s| = |\alpha_s| \, \forall \, s} \kappa_{\underline{\beta}}(x_1,\ldots,x_p).$$

Onital subalgebras A⁽¹⁾,..., A^(L) of A are called ⊗-freely independent if every mixed ⊗-free cumulant vanishes, i.e., κ_α(x₁,..., x_p) = 0 whenever for some s, α_s connects elements from different algebras.

Sang-Jun Park (CNRS)

\otimes -Free cumulants and \otimes -free independence

Definition (Nechita and P., in progress)
•
$$\varphi_{\underline{\alpha}}(x_1, \dots, x_p) = \sum_{\underline{\beta}: |\beta_s| + |\beta_s^{-1} \alpha_s| = |\alpha_s| \forall s} \kappa_{\underline{\beta}}(x_1, \dots, x_p).$$

Q A⁽¹⁾,..., A^(L) are ⊗-freely independent if κ_α(x₁,..., x_p) = 0 whenever for some s, α_s connects elements from different algebras.

REMARK:

•
$$\kappa_{\underline{\alpha}}(x_1,\ldots,x_p) := \sum_{\underline{\beta}: |\beta_s|+|\beta_s^{-1}\alpha_s|=|\alpha_s| \ \forall \ s} \varphi_{\underline{\beta}}(x_1,\ldots,x_p) \left(\prod_{s=1}^r \mathsf{M\"ob}(\beta_s^{-1}\alpha_s)\right).$$

• If
$$r=1$$
, $\kappa_{\underline{lpha}}=\kappa_{lpha}$ and free = \otimes -free.

Original Sector Sector

/ ...

Result 1: Local unitary invariance and ⊗-freeness

Theorem (Nechita and P., in progress)

- $X_N^{(1)}, \ldots, X_N^{(L)}$: independent families of $N^r \times N^r$ random matrices s.t. • each $X_N^{(i)}$ is local-UI,
 - each $X_N^{(i)}$ convergies in \otimes -distribution, i.e., the limit

$$\lim_{N\to\infty} \mathbb{E}\left[\operatorname{tr}_{\underline{\alpha}}(X_N^{(i)},\ldots,X_N^{(i)})\right]$$

exists for all $i = 1, \ldots, L$ and $\underline{\alpha} \in (S_p)^r$,

• + "factorization property".

Then $X_N^{(1)}, \ldots X_N^{(L)}$ are asymptotically \otimes -free as $N \to \infty$.

Result 2: CLT for \otimes -free elements

Theorem (Voiculescu 1986)

Let $\{x_i\}_{i=1}^{\infty} \subset (\mathcal{A}, \varphi)$ be a family of centered, identically distributed, and free elements. Then $\frac{1}{\sqrt{N}}(x_1 + \cdots + x_N)$ converges in distribution to a semicircular element of variance $\varphi(x_1^2)$. Equivalently,

$$\kappa_p\left(\frac{x_1+\cdots+x_N}{\sqrt{N}}\right) \to \begin{cases} \kappa_2(x_1)=\varphi(x_1^2) & \text{if } p=2, \\ 0 & \text{otherwise.} \end{cases}$$

8/12

Result 2: CLT for \otimes -free elements

Theorem (Voiculescu 1986)

Let $\{x_i\}_{i=1}^{\infty} \subset (\mathcal{A}, \varphi)$ be a family of centered, identically distributed, and free elements. Then $\kappa_p\left(\frac{x_1+\dots+x_N}{\sqrt{N}}\right) \rightarrow \begin{cases} \kappa_2(x_1) & \text{if } p=2, \\ 0 & \text{otherwise.} \end{cases}$

Theorem (Nechita and P., in progress)

Let $\{x_i\}_{i=1}^{\infty} \subset (\mathcal{A}, \varphi, (\varphi_{\underline{\alpha}}))$ be a family of identically \otimes -distributed and \otimes -free elements. Then as $N \to \infty$,

$$\kappa_p\left(\frac{x_1+\dots+x_N-N\varphi(x_1)}{\sqrt{N}}\right) \to \begin{cases} \sum_{\underline{\alpha}}\kappa_{\underline{\alpha}}(x_1) & \text{if } p \text{ is even,} \\ 0 & \text{if } p \text{ is odd,} \end{cases}$$

where the sum in the first case is taken over $\alpha_1, \ldots, \alpha_r \in NC_{1,2}(p)$ such that $\bigvee_{NC} \alpha_i = 1_p$ and $\bigvee_{\mathcal{P}} \alpha_i \in \mathcal{P}_2(p)$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Application: CLT for tensor products of free variables

Suppose that $\{a_i\}_{i=1}^{\infty} \subset (\mathcal{A}, \varphi)$ is a family of self-adjoint, identically distributed free elements with mean $\varphi(a_i) = \lambda$ and variance $\operatorname{var}(a_i) = \sigma^2$. Consider the identically \otimes -distributed and \otimes -free elements

$$x_i := a_i \otimes a_i \in (\mathcal{A}^{\otimes 2}, \varphi^{\otimes 2}, (\varphi_{\alpha_1} \otimes \varphi_{\alpha_2})).$$

Application: CLT for tensor products of free variables

Suppose that $\{a_i\}_{i=1}^{\infty} \subset (\mathcal{A}, \varphi)$ is a family of self-adjoint, identically distributed free elements with mean $\varphi(a_i) = \lambda$ and variance $\operatorname{var}(a_i) = \sigma^2$. Consider the identically \otimes -distributed and \otimes -free elements

$$x_i := a_i \otimes a_i \in (\mathcal{A}^{\otimes 2}, \varphi^{\otimes 2}, (\varphi_{\alpha_1} \otimes \varphi_{\alpha_2})).$$

Corollary (Lancien, Santos, and Youssef 2024+; Skoufranis 2024+) $\lim_{N\to\infty} \kappa_{2p} \left(\frac{x_1 + \dots + x_N - N\lambda^2}{\sqrt{N}} \right) = \begin{cases} \sigma^4 + 2\sigma^2\lambda^2 & \text{if } p = 1, \\ 2M_p\sigma^{2p}\lambda^{2p} & \text{if } p > 1, \end{cases}$

where M_p is the cardinality of a set depending only on p.

Sang-J	lun	Park	(CNRS	h

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outlook and future works

In this work, we provided

- Convergence of local-UI random matrices in the framework of ⊗-free probability.
- CLT for ⊗-free elements and its applications.
- Further results: asymptotic freeness and ⊗-freeness of non-indep. random matrices (e.g. partial transposes of UI matrices).

Outlook and future works

In this work, we provided

- Convergence of local-UI random matrices in the framework of ⊗-free probability.
- CLT for ⊗-free elements and its applications.
- Further results: asymptotic freeness and ⊗-freeness of non-indep. random matrices (e.g. partial transposes of UI matrices).

Future works:

- Comparision with other notions, e.g.
 - ► Tensor cumulants by Kunisky, Moore, and Wein (2024+),
 - ► Freeness of tensors by Bonnin and Bordenave (2024+).
- Any possible application to Quantum Information Theory.

Thank you for your attention!

< □ > < 同 > < 三 > < 三 >