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Multi-spiked tensor PCA problem

Definition (Spiked tensor model [Johnstone 2001; Richard, Montanari 2014])

Observe a p-tensor Y ∈ (RN)⊗p of the form

Y =
r∑

i=1

√
Nλiv

⊗p
i +W, (1)

where

• p ≥ 2 and r is fixed,

• W ∈ (RN)⊗p is a p-tensor with i.i.d. Gaussian entriesWi1,...,ip ∼ N (0, 1),

• λ1 ≥ · · · ≥ λr ≥ 0 are the signal-to-noise ratios (SNRs),

• v1, . . . , vr ∈ SN−1 are unknown, orthogonal signal vectors.

Goal: GivenM i.i.d. samples (Yℓ)ℓ≤M of the form (1), estimate v1, . . . , vr (with high
probability as N → ∞).

Estimation task: Produce estimators x1, . . . , xr attaining

• exact recovery of the spikes: xi = (1− o(1))vi for all 1 ≤ i ≤ r,
• recovery of a permutation of the spikes: there exists a permutation σ ∈ Sr such that
xi = (1− o(1))vσ(i) for all 1 ≤ i ≤ r,
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Themulti-spiked tensor PCA problem

Statistical procedure: Maximum Likelihood Estimator of V = [v1, . . . , vr] is given by a
solution of

minimize L(X; Y) =
r∑

i=1

λi⟨W, x⊗p
i ⟩ −

∑
1≤i,j≤r

√
Nλiλj⟨vi, xj⟩p−1

subject to X⊤X = Ir,

(2)

where X = [x1, . . . , xr] ∈ RN×r. The set St(N, r) = {X ∈ RN×r : X⊤X = Ir} is known as the
Stiefel manifold.

Algorithmic approach: We need an algorithm for outputting this estimator
X̂ = argminX∈St(N,r)L(X; Y).

Goal today: Understand thresholds (number of samples / steps needed) for SGD from
random initializations to recover.
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Online stochastic gradient descent
(SGD)



Online SGD algorithm

Online SGD algorithm

Input: i.i.d. samples (Yℓ)ℓ≤M, loss functionL(X; Yℓ), initial guess X0, and step size δN > 0.
Update:

Xt = RXt−1

(
−δN∇StL(Xt−1; Yt)

)
, (3)

whereRX : TXSt(N, r) → St(N, r) denotes a retraction map and

TXSt(N, r) =
{
V ∈ RN×r : X⊤V+ V⊤X = 0

}
denotes the tangent space at X ∈ St(N, r). Here, we choose the polar retraction defined by

RX(U) = (X+ U)
(
Ir + UU⊤

)−1/2
.

Moreover, for a function f : St(N, r) → R,

∇Stf(X) = ∇f(X)−
1
2
X(X⊤∇f(X) +∇f(X)⊤X).

Output: XM
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Main result for p ≥ 3

Theorem (Recovery of a permutation of the spikes for p ≥ 3)
Let X0 be uniformly distributed on St(N, r). Assume thatM ≫ log(N)Np−2, and consider

the online SGD started from X0 with step size δN ≪ log(N)−1N− p−1
2 . Then, afterM steps,

there exists a permutation σ∗ ∈ Sr such that for all k ∈ [r],

|⟨vσ∗(k), (XM)k⟩| → 1 in probability.

• If X ∈ RN×r is a matrix with i.i.d. entriesN (0, 1), then Y = X(X⊤X)−1/2 is uniformly
distributed on St(N, r) (Chikuse 1994).

• The permutation is determined by λiλj⟨vi, (X0)j⟩p−2.

• If the SNRs λ1, . . . , λr are sufficiently separated, then we have exact recovery of the
spikes.

• Regardless of the values of the SNRs, recovery of a permutation of the spikes is always
possible, provided a sample complexity of order log(N)Np−2.
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Examples

Figure 1: Evolution of the correlations {mij = ⟨vi, xj⟩, 1 ≤ i, j ≤ 2} under the population dynamics for
p = 3, λ1 = 3 andλ2 = 1.
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Examples

Figure 2: Evolution of the correlations {mij = ⟨vi, xj⟩, 1 ≤ i, j ≤ 4} under the population dynamics for
p = 3, λ1 = · · · = λ4 = 1.

Sequential elimination phenomenon: The correlations {⟨vσ∗(k), xk⟩}
r
k=1 increase one

by one, sequentially eliminating those that share a row or column index.
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Summary

• The number of samples required for online SGD from random
initializations to recover scales as log(N)Np−2;

• For p ≥ 3, recovery of a permutation of the spikes is always
achievable, even when the SNRs are equal;

• The hidden vectors are recovered sequentially in a process we
term sequential elimination: once a correlation exceeds a
critical threshold, all correlations sharing a row or column
index become sufficiently small, allowing the next correlation
to grow and becomemacroscopic.
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