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Symmetric Tensor Estimation

Let Xg be an N x M signal matrix with i.i.d. entries drawn from
some centred, bounded distribution Px and let Z be an order p
tensor with i.i.d. N(0,1) entries. Consider the order p output
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with SNR .
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Symmetric Tensor Estimation

Let Xg be an N x M signal matrix with i.i.d. entries drawn from
some centred, bounded distribution Px and let Z be an order p
tensor with i.i.d. N(0,1) entries. Consider the order p output

M
Alp —1)! ®
Y =/ vl Zxoﬁfkjuz,
k=1

with SNR .

Goal: Understand the mutual information /(Xo;Y) at large N in
the Bayes-optimal setting.
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Symmetric Tensor Estimation

Bayes-optimal means that we may assume that the estimator X of
Xg is such that
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Symmetric Tensor Estimation

Bayes-optimal means that we may assume that the estimator X of

Xg is such that
M
/A(P_l)!z : ®p 7
=1

The posterior distribution is
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Symmetric Tensor Estimation

Letting Fy(A\) = 751 Ez.x, In Zn(Y), we have that

M
1 A
im —/1(Xo;Y) = — XL 1°P) ke — lim Fn(N).
Jim = 1(Xo:Y) 2pkkEll(E[Xo,l 01l )ue — fim_Fu(A)
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Symmetric Tensor Estimation

Letting Fy(A\) = 751 Ez.x, In Zn(Y), we have that

M
1 A T 1op _
YY) = Py — lim Fy(N).
Jim 1 (Xo; Y) 2pkkzl(Elxo,lxo,l] Yk = lim_Fu(A)

For finite M it's known [Luneau-Barbier-Macris, 21] that

lim Fy(A) = sup Fiin(Q,N),
N=o0 Qes;,

Q) = Eln/ VT VR Dz 0T Q= 5xT QD oMy
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Matrix Estimation at Growing Rank

Theorem (Barbier-Ko-R., '24)

Setting p = 2 and assuming that M = o(N/1°), we have the
Parisi-type formula

lim Fy(A\) = sup FE5(g, \).
Wes q€0.p]
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Matrix Estimation at Growing Rank

Theorem (Barbier-Ko-R., '24)

Setting p = 2 and assuming that M = o(N/1°), we have the
Parisi-type formula

I|m Fn(X) = sup Flz(q,A).
Wes q€(0,p]

Key ideas:
@ sup F,\I}S = sup FRS
@ Overlap concentration

@ A multiscale cavity method decoupling M, N growth
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Extending to Tensors

We proved the p=2 rank-one reduction

sup F/\/rz(Q )\) sup F12( )\)
Qesy, q€[0,0]

by taking derivatives in eigenvalues of Q and showing that the
maximisation problem decouples over the eigenvalues into M
identical problems.
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Extending to Tensors

We proved the p=2 rank-one reduction

sup F/\/rz(Q A) = sup F12( ' A)
Qesy, q€[0,p]
by taking derivatives in eigenvalues of Q and showing that the
maximisation problem decouples over the eigenvalues into M
identical problems. This relied on the fact that
M
> Q) =TrQ%

k,k'=1
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Extending to Tensors

We proved the p=2 rank-one reduction
sup F/\/rz(Q A) = sup F12( ;A)
Qesy, q€[0,p]

by taking derivatives in eigenvalues of Q and showing that the
maximisation problem decouples over the eigenvalues into M
identical problems. This relied on the fact that

M

> Q) =TrQ%

k,k'=1

In the general-p case, we need to relate eigenvalues of Q°(P~1) to
those of Q°P or find some other way of maximising

1 T./0Qo(p— TOolp—1)y_ A, TOo(p—1
FRS(Q. ) = MEm/eﬁx V@ Dz ad Q0 x-gxT Q0 x ypii ()

M

_AMp—1) Z (Q°P) -

p Kk k'=1
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