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Symmetric Tensor Estimation

Let X0 be an N ×M signal matrix with i.i.d. entries drawn from
some centred, bounded distribution PX and let Z be an order p
tensor with i.i.d. N (0, 1) entries. Consider the order p output

Y =

√
λ(p − 1)!

Np−1

M∑
k=1

X⊗p
0,·,k + Z,

Yi1,...,ip =

√
λ(p − 1)!

Np−1

M∑
k=1

X0,i1,kX0,i2,k · · ·X0,ip ,k + Zi1,...,ip .

with SNR λ.

Goal: Understand the mutual information I (X0;Y) at large N in
the Bayes-optimal setting.
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Symmetric Tensor Estimation

Bayes-optimal means that we may assume that the estimator X of
X0 is such that

Y =

√
λ(p − 1)!

Np−1

M∑
k=1

X⊗p
·,k + Z̃.

The posterior distribution is

P(X|Y) =
P⊗MN
X

ZN(Y)
eHN(X),

HN(X) = −1

2

∑
i1≤i2≤···≤ip

(
Yi1,...,ip −

√
λ(p − 1)!

Np−1

×
M∑
k=1

Xi1,kXi2,k · · ·Xip ,k

)2

+
1

2
Y2

i1,...,ip
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Symmetric Tensor Estimation

Letting FN(λ) =
1

NMEZ,X0 lnZN(Y), we have that

lim
N→∞

1

N
I (X0;Y) =

λ

2p

M∑
k,k ′=1

(E[X0,1X
T
0,1]

◦p)kk ′ − lim
N→∞

FN(λ).

For finite M it’s known [Luneau-Barbier-Macris,’21] that

lim
N→∞

FN(λ) = sup
Q∈S+

M

FRS
M,p(Q, λ),

FRS
M,p(Q, λ) =

1

M
E ln

∫
e
√
λxT

√
Q◦(p−1)z+λxT0 Q

◦(p−1)x−λ
2 x

TQ◦(p−1)x dP⊗M
X (x)

− λ(p − 1)

2pM

M∑
k,k ′=1

(Q◦p)kk ′ .
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Matrix Estimation at Growing Rank

Theorem (Barbier-Ko-R., ’24)

Setting p = 2 and assuming that M = o(N1/10), we have the
Parisi-type formula

lim
N→∞

FN(λ) = sup
q∈[0,ρ]

FRS
1,2 (q, λ).

Key ideas:

supFRS
M,2 = supFRS

1,2

Overlap concentration

A multiscale cavity method decoupling M,N growth
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Extending to Tensors

We proved the p=2 rank-one reduction

sup
Q∈S+

M

FRS
M,2(Q, λ) = sup

q∈[0,ρ]
FRS
1,2 (q, λ)

by taking derivatives in eigenvalues of Q and showing that the
maximisation problem decouples over the eigenvalues into M
identical problems.

This relied on the fact that

M∑
k,k ′=1

(Q◦2)k,k ′ = TrQ2.

In the general-p case, we need to relate eigenvalues of Q◦(p−1) to
those of Q◦p or find some other way of maximising

FRS
M,p(Q, λ) =

1

M
E ln

∫
e
√
λxT

√
Q◦(p−1)z+λxT0 Q
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2 x
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Questions?
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