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Learning states on a qudit chain

• Task: given 𝜔⊗𝑛, find �̂� s.t. ‖�̂�−𝜔‖1
2 ≤ 𝜖

with high probability

• Local dimension 𝑑𝒜

• General case, 𝑡 sites: 𝑛 = Θ(𝑑2𝑡
𝒜

𝜖2 )
(optimal tomography)

• Promised structure: marginals of finitely
correlated states (special case of matrix
product operators), hidden dimension ≤ 𝑚

• New result:
𝑂(poly(𝑡, 𝜖−1, 𝑑𝒜, 𝑚, additional parameters))
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Finitely correlated states

• Let 𝜔 be a translation invariant state
(stationary quantum source).
𝜔𝑡 = marginals of segments of length 𝑡

• 𝜔 is an FCS if there exist 𝑚 ∈ ℕ and a
realization

• 𝜌 ∈ ℂ𝑚,
• 𝑒 ∈ ℂ𝑚,
• 𝕂 ∶ ℒ(ℋ𝒜) → 𝕄𝑚,𝑚(ℂ),

s.t.

⟨𝑗1, ...𝑗𝑡|𝜔𝑡|𝑖1, ...𝑖𝑡⟩ = 𝜌𝕂|𝑖1⟩⟨𝑗1|...𝕂|𝑖𝑡⟩⟨𝑗𝑡|𝑒

for any 𝑡 ∈ ℕ. [Fannes, Nachtergaele, Werner 1992]

3 / 14



Model reconstruction from marginals

Exact reconstruction
• Viable model parameters 𝜌, 𝕂, 𝑒 can be reconstructed from 𝜔𝑡∗ , 𝑡∗ large enough

(at most 2𝑚 + 1)

• The exact reconstruction algorithm uses 𝜔𝑡∗ and linear algebra [Baumgratz, Gross,
Cramer, Plenio 2013]

Approximate reconstruction (LearnFCS)
• Obtain approximate knowledge of 𝜔𝑡∗ from tomography

• Estimates of 𝜔𝑡∗ can be plugged in (a modification of) the exact reconstruction
algorithm, with outputs ̂𝜌, �̂�, ̂𝑒

• Compute expectation values of estimate �̂�𝑡 as

Tr[�̂�𝑡(𝐴1 ⊗ ... ⊗ 𝐴𝑡)] = ̂𝜌�̂�𝐴1
...�̂�𝐴𝑡

̂𝑒.
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Exact reconstruction

𝜔𝑡2−𝑡1+1 → Ω(−𝑡1,𝑡2) ∶ 𝒜𝑅 → 𝒜∗
𝐿, Ω(−𝑡1,𝑡2)(𝐴𝑟)[𝐴𝑙] = Tr[𝜔𝑡2−𝑡1+1(𝐴𝑙 ⊗ 𝐴𝑟)]

𝜔𝑡2−𝑡1+2 → Ω(−𝑡1,𝑡2)
𝐴 ∶ 𝒜𝑅 → 𝒜∗

𝐿, Ω(−𝑡1,𝑡2)
𝐴 (𝐴𝑟)[𝐴𝑙] = Tr[𝜔𝑡2−𝑡1+2(𝐴𝑙 ⊗ 𝐴 ⊗ 𝐴𝑟)]

𝜔𝑡2
→ Ω(𝑡2) ∈ 𝒜∗

𝑅, Ω(𝑡2)(𝐴𝑟) = Tr[𝜔𝑡2
(𝐴𝑟)]

𝜔𝑡1+1 → Ω(−𝑡1) ∈ 𝒜∗
𝐿, Ω(−𝑡1)(𝐴𝑙) = Tr[𝜔𝑡1+1(𝐴𝑙)]

• 𝜔 is FCS iff the rank of Ω(−𝑡1,𝑡2) stays bounded as 𝑡1, 𝑡2 grow.
• 𝑚 ∶= minimal dimension of a realization = maximum rank of Ω(−𝑡1,𝑡2)

realizations of minimal dimension are called regular.
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Observable realization and approximate reconstruction

Observable realization
Let 𝜔 be an FCS with a regular realization of dimension 𝑚.
If Ω(−𝑠+1,𝑠) has rank 𝑚, with singular value decomposition Ω(−𝑡1,𝑡2) = 𝑈𝐷𝑂, then

• 𝑒 ∶= 𝑈⊺Ω(𝑠) ∈ ℂ𝑚,
• 𝜌 ∶= Ω(−𝑠+1)(𝑈⊺Ω(−𝑠+1,𝑠))+ ∈ ℂ𝑚,
• 𝕂𝐴 ∶= 𝑈⊺Ω(−𝑠+1,𝑠)

𝐴 (𝑈⊺Ω(−𝑠+1,𝑠))+ ∈ 𝕄𝑚,𝑚(ℂ).
is a regular realization.
LearnFCS: plugin estimates of Ωs and truncate singular value decomposition.
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Approximation theorem

Definition
We define Σ(𝑚, 𝑠, 𝜂) as the class of FCSs with regular realization of dimension
𝑚′ ≤ 𝑚, rank(Ω(−𝑠+1,𝑠)) = 𝑚′, and with 𝜎𝑚′(Ω(−𝑠+1,𝑠)) ≥ 𝜂.

Theorem
Let 𝜔 ∈ Σ(𝑚, 𝑠, 𝜂). Let �̂�𝑠, �̂�2𝑠, �̂�2𝑠+1 be estimates of 𝜔𝑠, 𝜔2𝑠, 𝜔2𝑠+1 respectively, such
that 𝐷𝐻𝑆(�̂�𝑠, 𝜔𝑠), 𝐷𝐻𝑆(�̂�2𝑠, 𝜔2𝑠), 𝐷𝐻𝑆(�̂�2𝑠+1, 𝜔2𝑠+1) are smaller than 𝜖𝜂3

20𝑡𝑚√𝑑𝒜
.

Then, �̂�𝑡 obtained from LearnFCS satisfies

‖�̂�𝑡 − 𝜔𝑡‖1
2 ≤ 𝜖. (1)
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Sample complexity bounds

Set 𝑛 be the number of copies of 𝜔2𝑠+1 provided to the learner.
LearnFCS outputs �̂�𝑡, ‖�̂�𝑡 − 𝜔𝑡‖1 ≤ 2𝜖 when 𝑛 large enough with

• local measurements
(via [Guta, Kahn, Kueng, Tropp 2020]):

𝑛 = �̃� (𝑡2 min(𝑚2, 𝑑2
𝐵)𝑑6𝑠+4

𝐴
𝜖2𝜂6 ) . (2)

• global but single-copy measurements:
(via [Qin, Jameson, Gong, Wakin, Zhu 2023]),

𝑛 = �̃� (𝑠3𝑡2𝑚2 min(𝑚2, 𝑑2
𝐵)𝑑3

𝐴
𝜖2𝜂6 ) . (3)
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Error propagation: proof overview

• ̃𝜌, �̃�, ̃𝑒 empirical (exact) realization, depend on measurement results

𝜔𝑡 = ̃𝜌�̃�𝑡 ̃𝑒 �̂�𝑡 = ̂𝜌�̂�𝑡 ̂𝑒

‖�̂�𝑡 − 𝜔𝑡‖1 ≤ ‖( ̂𝜌 − ̃𝜌)�̃�𝑡 ̃𝑒‖1⏟⏟⏟⏟⏟
(I)

+ ‖( ̂𝜌 − ̃𝜌)(�̂�𝑡 ̂𝑒 − �̃�𝑡 ̃𝑒)‖1⏟⏟⏟⏟⏟⏟⏟⏟⏟
(II)

+ ‖ ̃𝜌(�̃�𝑡 ̃𝑒 − �̂�𝑡 ̂𝑒)‖1⏟⏟⏟⏟⏟⏟⏟
(III)

(4)

• Bound each term using telescoping sums, triangle inequalities, submultiplicativity
of (cb) operator norms (for operator systems)

• Connect with Hilbert-Schmidt error of the estimates from tomography
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Error propagation: heuristic from quantum maps

• If Φ, Φ̃ are channels
‖Φ𝑡(𝜌) − Φ̃𝑡(𝜌)‖1 ≤ 𝑡‖Φ − Φ̃‖⋄. (5)

• In general,
‖Φ𝑡(𝜌) − Φ̃𝑡(𝜌)‖1 ≤ (‖Φ‖⋄ + ‖Φ − Φ̃‖⋄)𝑡 − ‖Φ‖𝑡

⋄. (6)
from triangle inequalities, submultiplicativity and induction.

• Similar argument valid also for approximations of the regular realizations and
operator systems cb norms. Which cb norms should we use?
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Solution: cb norm for operator systems

• Convex cone: 𝐶 ⊆ ℝ𝑚 ⊆ ℂ𝑚.
• Positivity: 𝑣 ≥𝐶 0 (= 𝑣 ∈ 𝐶, generalizes 𝐴 ≥ 0)
• Norm: ‖𝑣‖𝑒 = {min 𝜆 ≥ 0 ∶ ±𝑣 ≤𝐶 𝜆𝑒} (generalizes ‖𝐴‖∞)
• Operator system: Family of cones {𝐶𝑛} in ℂ𝑚 ⊗ 𝕄𝑛(ℂ) (with certain properties)
• Operator systems {𝐶𝑛} for ℂ𝑚1 , {𝐶′

𝑛} for ℂ𝑚2

→ notions of cb norm, complete positivity for maps ℂ𝑚1 → ℂ𝑚2 .

Operator system structure of 𝜔
• 𝑥 ∈ ℂ𝑚 can be written as 𝕂𝑡(𝑋 ⊗ 𝑒) for some 𝑡, 𝑋 ∈ 𝕄𝑑𝑡

𝒜,𝑑𝑡
𝒜

(ℂ).
• 𝐶𝑛 ∶= {𝑥 ∈ ℂ𝑚 ⊗ 𝕄𝑛(ℂ) ; ∃𝑡 ∈ ℕ, 𝑋 ≥ 0 s.t. 𝑥 = (id𝕄𝑛(ℂ) ⊗ 𝕂𝑡)(𝑋 ⊗ 𝑒)}.
• With these choices 𝕂 is completely positive and unital, therefore ||𝕂||𝑐𝑏 = 1.
• Telescoping sum trick gives the desired bound.
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Operator systems from FCS

Connection with Hilbert-Schmidt errors
Equivalence with Euclidean norm on ℂ𝑚 ⊗ 𝕄𝑛(ℂ):

𝜎𝑚(Ω)‖ ⋅ ‖𝑒𝑛
≤ ‖ ⋅ ‖𝑛,2 ≤ √𝑛‖ ⋅ ‖𝑒𝑛

• It follows that ‖�̃� − �̂�‖1𝑑𝐴 ⊗𝑒→𝑒,𝑐𝑏 ≤ 𝑚 √𝑑𝐴
𝜎𝑚(Ω)‖�̃� − �̂�‖2→2,

• and ‖�̃� − �̂�‖2→2 ≤ 4 ( ‖Ω−Ω̂‖2
𝜎𝑚(Ω)2 + ‖Ω(⋅)−Ω̂(⋅)‖2

3𝜎𝑚(Ω) ) via matrix perturbation theory
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Extensions

• Quantum model: bounds from quotient operator system, finite amplification
bound for cb norm of maps into matrices.

• The non-translation-invariant case can be addressed with essentially the same
algorithm and proof for injective tensor networks.
In this case, one needs that all the estimations of the necessary marginals are
accurate, increasing the sample and computational complexity by poly(𝑡).

• The algorithm is robust to noise and allows to learn states that are close to FCS.
Potential poly(𝑡) algorithm for 1D Gibbs states: efficient FCS approximation, but
𝜎𝑚(Ω) is difficult to control. See also [Gondolf, Scalet, Ruiz-de-Alarcon,
Alhambra, Capel 2024] for a different approach.
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Conclusions

Summary
• FCSs can be learned with sample complexity polynomial in system size.
• Theory of operator systems proved useful for learning problems.

Future directions
• Finitely correlated channels, online learning
• Beyond 1D: graphs, 2D lattices
• Exhibit genuinely quantum FCSs which do not have models with quantum

memory.

Thank you!
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Related work

Learning HMM with spectral algorithms (vs maximum likelihood)
• [Hsu, Kakade, Zhang 2008]: first analysis of the reconstruction algorithm for

HMMs.
• [Siddiqi, Boots, Gordon 2009], [Balle, 2013] relaxed some assumptions.
• No analysis for quantum or general models.

Learning FCSs
• [Baumgratz, Gross, Cramer, Plenio 2013]: reconstruction algorithm proposed (no

error analysis).
• [Holzapfel, Cramer, Datta, Plenio 2018]: analysis of reconstruction for a bipartite

state, not sufficient for trace distance guarantees.
• [Qin, Jameson, Gong, Wakin, Zhu 2023]: random measurements, analysis with

Hilbert-Schmidt error.
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Subclass: states generated by a finite quantum memory

A class of FCSs:
• Quantum systems ℬ, 𝒜, with dim ℬ = 𝑑ℬ, dim 𝒜 = 𝑑𝒜,
• Quantum channel Φ ∶ ℬ → ℬ𝒜, ℰ = Φ† ∶ ℬ𝒜 → ℬ adjoint map
• 𝜌 state of ℬ, Tr𝒜[Φ(𝜌)] = 𝜌, 𝑒 = 𝟙ℬ

• Tr[𝜔𝑡(𝐴1 ⊗ ... ⊗ 𝐴𝑡)] = Trℬ[𝜌ℰ𝐴1
...ℰ𝐴𝑡

(𝟙ℬ)]
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Numerical results
The ground state of the AKLT Hamiltonian

𝐻AKLT = ∑
𝑖

1
2S𝑖 ⋅ S𝑖+1 + 1

6 (S𝑖 ⋅ S𝑖+1)2 + 1
3, (7)

is an FCS with a quantum realization. Trace distance error of the reconstruction:
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Solution: hidden system as a GPT

Generalized probabilistic theory (GPT)
Mathematical blueprint of theories describing preparations and measurements

• Not all FCSs have finite-dimensional quantum models [F., Lumbreras, Winter
2024]...

• ... but all FCSs can be seen as generated by sequential maps on a memory system
described by a GPT.

• Generalization of cb norms from GPT structure.
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GPT dictionary

• Convex cone: 𝐶 ⊆ 𝑉 , s.t. 𝛼𝑥 + 𝛽𝑦 ∈ 𝐶, for all 𝛼, 𝛽 ≥ 0, 𝑥, 𝑦 ∈ 𝐶.
• Dual cone of 𝐶: 𝐶∗ = {𝑓 ∈ 𝑉 ∗|𝑓(𝑥) ≥ 0 ∀𝑥 ∈ 𝐶}.

Quantum GPT
positive observables 𝐴 ≥ 0 𝑣 ≥𝐶 0 ( = 𝑣 ∈ 𝐶)
identity observable 𝟙 𝑒 ≥𝐶 0 s.t.

∀𝑥 ∈ 𝑉 ∃𝜆 ≥ 0 ∶ 𝜆𝑒 ≥𝐶 𝑥
states 𝜌 ≥ 0, Tr[𝜌] = 1 𝑓 ≥𝐶′ , 𝐶′ ⊆ 𝐶∗, 𝑓(𝑒) = 1

measurements POVM {𝑥𝑖}𝑚
𝑖=1, 𝑥𝑖 ≥𝐶 0, ∑𝑚

𝑖=1 𝑥𝑖 = 𝑒
state transformations positive maps cone-preserving maps

norms ‖𝐴‖∞,
‖𝜌‖1

‖𝑣‖𝑒 = {min 𝜆 ≥ 0 ∶ ±𝑣 ≤ 𝜆𝑒}.
‖𝑓‖𝑒,∗ = {max |𝑓(𝑣)| ∶ 𝑣 ∈ 𝑉 , ‖𝑣‖𝑒 ≤ 1}.
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General probabilistic theories entangled with quantum systems

• 𝑉 = ℂ𝑚.
• Cone 𝐶1 ⊆ ℝ𝑚 ⊆ ℂ𝑚 with unit 𝑒 defines a GPT.
• Positive observables of a general-quantum composite system are cones

𝒞 = {𝐶𝑛}𝑛∈ℕ
𝐶𝑛 ⊆ (ℂ𝑚 ⊗ 𝕄𝑛,𝑛(ℂ))ℎ,

with units 𝑒𝑛 ∶= 𝑒 ⊗ 1𝑛
• Consistency of complete positivity on the quantum system:

for each 𝑘 × 𝑛-matrix 𝑀 ∈ 𝕄𝑘,𝑛 it holds that 𝑀†𝐶𝑘𝑀 ⊆ 𝐶𝑛.
• (𝑉 , 𝒞, 𝑒) is called an operator system.
• A linear map 𝕂 ∶ 𝑉 → 𝑉 is completely positive if (id𝑛 ⊗ 𝕂)(𝐶𝑛) ⊆ 𝐶𝑛 for every 𝑛.
• A map 𝕂 ∶ 𝑉 → 𝑉 ′ between two operator systems (with cones 𝒞, 𝒞′) is

completely positive if (id𝑛 ⊗ 𝕂)(𝐶𝑛) ⊆ 𝐶′
𝑛 if for every 𝑛.
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Norms for operator systems

• (𝑉 , 𝒞, 𝑒) provides norms ||𝑋||𝑒𝑛
∶= min{𝜆 ∶ ( 0 𝑋

𝑋∗ 0 ) ≤ 𝜆 (𝑒𝑛 0
0 𝑒𝑛

)}

• Completely bounded norm of 𝕂 ∶ 𝕄𝑑(ℂ) ⊗ 𝑉 → 𝑉 :

||𝕂||𝑐𝑏 = sup
𝑛

||id𝕄𝑛,𝑛(ℂ) ⊗ 𝕂||1𝑑⊗𝑒𝑛→𝑒𝑛
(8)

• If 𝕂 is completely positive and 𝕂𝑒 = 𝑒 (unital), then ||𝕂||𝑐𝑏 = 1.
• Unital completely positive maps are the ”physical” maps between operator

systems.
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Operator systems from FCS

Positivity of 𝜔 implies convex geometry structure.
Recall observable realization (ℂ𝑚, 𝑒, 𝜌, 𝕂)

• 𝑥 ∈ ℂ𝑚 can be written as 𝕂𝑡(𝑋 ⊗ 𝑒) for some 𝑡, 𝑋 ∈ 𝕄𝑑𝑡
𝒜,𝑑𝑡

𝒜
(ℂ).

•
𝐶1 ∶= {𝑥 ∈ ℂ𝑚 ∶ ∃𝑡 ∈ ℕ, 𝑋 ≥ 0 s.t. 𝑥 = 𝕂𝑡(𝑋 ⊗ 𝑒)},

unit 𝑒 = 𝑈⊺Ω(1) ∈ 𝐶0, 𝜌 ∈ 𝐶∗
1, 𝜌𝑒 = 1.

•

𝐶𝑛 ∶= {𝑥 ∈ ℂ𝑚 ⊗ 𝕄𝑛(ℂ) ; ∃𝑡 ∈ ℕ, 𝑋 ≥ 0 s.t. 𝑥 = (id𝕄𝑛(ℂ) ⊗ 𝕂𝑡)(𝑋 ⊗ 𝑒)}.

• With these choices 𝕂 is completely positive and unital, therefore ||𝕂||𝑐𝑏 = 1.
• Telescoping sum trick gives the desired bound.
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Operator systems from FCS

Connection with Hilbert-Schmidt errors
Equivalence with Euclidean norm on ℂ𝑚 ⊗ 𝕄𝑛,𝑛(ℂ):

𝜎𝑚(Ω)‖ ⋅ ‖𝑒𝑛
≤ ‖ ⋅ ‖𝑛,2 ≤ √𝑛‖ ⋅ ‖𝑒𝑛

• It follows that ‖�̃� − �̂�‖1𝑑𝐴 ⊗𝑒→𝑒,𝑐𝑏 ≤ 𝑚 √𝑑𝐴
𝜎𝑚(Ω)‖�̃� − �̂�‖2→2,

• and ‖�̃� − �̂�‖2→2 ≤ 4 ( ‖Ω−Ω̂‖2
𝜎𝑚(Ω)2 + ‖Ω(⋅)−Ω̂(⋅)‖2

3𝜎𝑚(Ω) ) via matrix perturbation theory
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