
ENTANGLEMENT BETWEEN CONES

GUILLAUME AUBRUN

Abstract. Lectures given during the conferences ”TENSORS 2024” at the

Institut Henri Poincaré

1. Lecture 1

We work in a finite-dimensional real vector space V .

1.1. Cones. A subset C Ă V is a (convex) cone if sx ` ty P C whenever s, t P R`

and x, y P C. We usually assume some conditions on C. We say that C is

‚ generating if C spans V as a vector space, or equivalently is not contained
in a proper subspace of V , or again if C ´ C “ tx´ y : x, y P Cu “ V .

‚ salient if C does not contain a line, or equivalently if 0 is an extreme point
of C, or again if C X p´Cq “ t0u.

‚ proper if C is closed, generating and salient.

Two cones C1 Ă V1 and C2 Ă V2 are isomorphic if there exist a linear bijection
Φ : V1 Ñ V2 such that ΦpC1q “ C2.

Here are some example of cones.

(1) The positive orthant Rn
` “ tx P Rn : xi ě 0u is a proper cone in the

vector space Rn. A cone isomorphic to Rn
` is called classical. Equivalently,

C is classical if there is a basis pe1, . . . , enq of the vector space V which
generates C, is the sense that

C “

#

n
ÿ

i“1

λiei : λi ě 0

+

.

(2) The Lorentz cone Ln “ tx P Rn : xn ě px21 ` ¨ ¨ ¨ ` x2n´1q1{2u.
(3) The cone of positive semi-definite operators over a real or complex Hilbert

space PSDpHq is a proper cone in the vector space HermpHq of Hermitian
operators. If dimpHq “ n then the dimension of PSDpHq equals npn` 1q{2
in the real case and n2 in the complex case.

(4) If X is a finite-dimensional normed space, the cone over X is the subset of
X ˆ R defined as

CX “ tpx, tq : t ě }x}u

Exercise 1. All two-dimensional proper cones are classical. The cones PSDpR2q

and L3 are isomorphic. The cones PSDpC2q and L4 are isomorphic.

1.2. Extreme rays. A nonzero vector x P C is extremal if, whenever x “ x1 ` x2

for x1, x2 in C, then x1 and x2 are proportional to x. If x is extremal, the set
tλx : λ ě 0u is called an extreme ray of C. Theorem: any proper cone is the
convex hull of its extreme rays.
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Exercise 2. Show that any d-dimensional proper cone has ě d extreme rays, and
that any proper cone with d extreme rays is classical. Show that all 3-dimensional
proper cones with 4 extreme rays are isomorphic.

1.3. Duality. Let C Ă V be a cone, and V ˚ be the dual vector space. We define
the dual cone as

C˚ “ tf P V ˚ : fpxq ě 0 for every x P Cu.

Since V is finite-dimensional, we may identify V ˚˚ with V . Then

Proposition 1. If C Ă V is a nonempty closed convex cone, then C˚˚ “ C.

Proof. A point x belongs to C˚˚ iff fpxq ě 0 for every f P C˚, so the inclusion
C Ă C˚˚ is obvious. If x R C, we may find by the Hahn–Banach separation theorem
(since C is closed and convex) a linear form f P V ˚ such that fpxq ă inf fpCq. Since
fpCq is a nonempty cone in R, since is only possible if that infimum equals 0. This
means that f P C˚ and therefore x R C˚˚. □

Duality reverses order: if C1 Ă C2 then C˚
1 Ą C˚

2 . If W is a linear subspace
(a very special kind of closed convex cone), then W˚ is the annihilator of W . In
particular, it follows that, for a closed convex cone C, the cone C is generating iff
the dual cone C˚ is salient.

Proposition 2. Let C Ă V be a closed convex cone. A linear form f P V ˚ belongs
to the interior of C˚ iff we have fpxq ą 0 for every x P Czt0u.

Proof. Consider an arbitrary norm } ¨ } on V and let } ¨ }˚ be the dual norm on V ˚.
The key is to observe that, for f P V ˚

inf
}h}˚ď1

pf ` εhqpxq “ fpxq ´ ε}x}.

and therefore Bpf, εq Ă C˚ iff fpxq ě ε}x} for every x P C. By homogeneity, this is
equivalent to say that f is positive on the compact set C X S (where S is the unit
sphere). □

The dual version is: x P intpCq iff fpxq ą 0 for any nonzero f P C˚. In particular,
if x P BC, there exists a nonzero f P C˚ such that fpxq “ 0.

A base for a cone C Ă V is a convex set B Ă C such that the map pt, xq ÞÑ tx is
a bijection from p0,8q ˆB to C.

Proposition 3. Let C be a proper cone. For any f P intpC˚q, the set tx P C :
fpxq “ 1u is a base for C, which is compact.

Proof. Take f P intpC˚q. Any x P Czt0u can be written as λ¨x{λ for λ “ fpxq, hence
CX tf “ 1u is a base. Use local compactness of the ambiant space to conclude. □

If K1 and K2 are two different bases for C, there is a projective transformation
p : K1 Ñ K2 mapping K1 to K2.

Examples (1)-(3) of cones given earlier have a stronger property: any different
bases are related by an affine transformation. This is related to the fact that the
cones are homogeneous (a cone C is homogeneous if the group of automorphisms
act transitively on intpCq), which is very special situation.

If V is equipped with an inner product, any element of V ˚ can be realized as
x ÞÑ xx, yy for a unique y P V . This allows to identify V and V ˚. This is the case
for the space Rn (using the usual inner product) and for the space HermpHq, using
the Hilbert–Schmidt inner product xA,By “ TrpABq.
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Exercise 3. Show that with the above identification, we have pRn
`q˚ “ Rn

`, L˚
n “ Ln

and PSDpHq˚ “ PSDpHq.
Show that for every normed space X, the cone pCXq˚ is isomorphic to CX˚ .

1.4. Tensor products of cones. Suppose now that we have two proper cones
C1 Ă V1 and C2 Ă V2 and we want to define C1 b C2. There are two meaningful
definitions.

The minimal tensor product of C1 and C2 is defined as

C1bminC2 “ convtx1 b x2 : x1 P C1, x2 P C2u.

Example 1. Given Hilbert spaces H1 and H2, there is a natural embedding

HermpH1q b HermpH2q ÝÑ HermpH1 bH2q

This embedding is surjective in the complex case but not in the real case (com-
pare dimensions). In the complex case, we identify HermpH1q b HermpH2q and
HermpH1 b H2q. The cone PSDpH1qbmin PSDpH2q is the cone of separable opera-
tors. By homogeneity, we may restrict to states (positive operators with trace 1).
A state is separable iff it is a convex combination of pure product states.

Exercise 4. If C1 and C2 are proper, so is C1bminC2.

There is a dual notion, the maximal tensor product of C1 and C2 defined as

C1bmaxC2 “ tz P V1 b V2 : pf1 b f2qpzq ě 0 for every f1 P C˚
1 , f2 P C˚

2 u,

or more succinctly

C1bmaxC2 “ pC˚
1bminC

˚
2 q˚.

Example 2. Given Hilbert spaces H1 and H2, PSDpH1qbmax PSDpH2q identifies
with the cone of block-positive operators. An operator T P HermpH1 bH2q is said
to be block-positive if

xx1 b x2|T |x1 b x2y ě 0

for every x1 P H1 and x2 P H2. They are sometimes called entanglement witnesses
in quantum information. We have strict inclusions

PSDpC2qbmin PSDpC2q Ĺ PSDpC2 b C2q Ĺ PSDpC2qbmax PSDpC2q.

To show that the left inclusion is strict, consider the entangled state |ψyxψ| with
|ψy “ 1?

2
p|00y ` |11yq. To show that the right inclusion is strict, consider the

operator Id ´ 2|ψyxψ| which is block-positive but not positive.

For general convex cones C1 and C2, it is obvious that

C1bminC2 Ă C1bmaxC2.

Let’s say that the pair pC1,C2q is nuclear if C1bminC2 “ C1bmaxC2, and entan-
gleable if C1bminC2 Ĺ C1bmaxC2.

The goal of these lectures is to prove the following result, confirming a conjecture
by Barker in the late 1970’s.

Theorem 1 (Aubrun–Lami–Plávala–Palazuelos). Let C1 Ă V1 and C2 Ă V2 be two
proper cones. Then the pair pC1,C2q is nuclear if and only if C1 or C2 is classical.
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2. Lecture 2

Consider now the cone PpC1,C2q of positive operators from C1 to C2 (i.e., linear
maps Φ P LpV1, V2q such that ΦpC1q Ă C2). The space LpV1, V2q is canonically
isomorphic to V ˚

1 bV2. Under this isomorphism, the cone PpC1,C2q corresponds to
C˚
1bmaxC2. What corresponds to C˚

1bminC2 is the cone of entanglement-breaking
or “mention measure-and-prepare” maps, of the form

ϕpxq “
ÿ

i

fipxqxi

with fi P C˚
1 and xi P C2.

One direction is easy: assuming that C1 is classical, we show that C1bmaxC2 Ă

C1bminC2. Let peiq be a basis of the vector space V1 and pe˚
i q be the dual basis.

Observe that ε˚
i P C˚. We may write z as

z “
ÿ

i

ei b yi

for pyiq in V2. For any f P C˚
2 , we have

0 ď pe˚
i b fqpzq “ fpyiq.

Since this holds for every f P C˚
2 , we conclude that yi P C˚˚

2 “ C2. This shows that
z P C1bminC2.

Given two non-classical cones C1 and C2, we need to find an “entangled” vector
in C1bmaxC2 but not in C1bminC2. We first observe that such a vector cannot be
of rank 2.

Proposition 4 (Cariello). Let C1 Ă V1 and C2 Ă V2 be proper cones. If z P

C1bmaxC2 has rank ď 2, then z P C1bminC2.

Proof. If z “ x1 b x2, then for every f P C˚
2 we have fpx2qx1 P C1, so elements

C˚
2 have a constant sign on x2. We may assume that this sign is positive, so that
x2 P C2 and x1 P C1.

Assume that z has rank 2 and that z P intpC1bmaxC2q. Write z “ x1bx2`y1by2
and let Ei “ spanpxi, yiq. The space Ei intersects the interior of Ci. The 2-
dimensional proper cone Ci X Ei has two generators si and ti. Since si and ti
belong to the boundary of Ci, by the Hahn–Banach theorem there exists nonzero
s˚
i and t˚i in C˚

i such that s˚
i psiq “ t˚i ptiq “ 0. We have s˚

i ptiq ą 0 and t˚i psiq ą 0
(because si ` ti P intpCiq) and we may rescale such that s˚

i ptiq “ t˚i psiq “ 1. The
map

Φi : x ÞÑ s˚
i pxqti ` t˚i pxqsi

fixes si and ti and hence is the identity on Ei. Hence,

z “ pΦ1 b Φ2qpzq

“ ps˚
1 b s˚

2 qpzqt1 b t2 ` ps˚
1 b t˚2 qpzqt1 b s2

`pt˚1 b s˚
2 qpzqs1 b t2 ` pt˚1 b t˚2 qpzqs1 b s2

showing that z P C1bminC2.
For the general case, fix ui P intpCiq and u˚

i P intpC˚
i q. The vector

zε “ pId ` ε|u1yxu˚
1 |q b pId ` ε|u2yxu˚

2 |qpzq

belongs to intpC1bmaxC2q and therefore to C1bminC2 by the previous paragraph,
and tends to z and ε Ñ 0. □
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In order to prove the theorem, we need to build inside any non-classical cone
something which looks like entanglement. Here is the key gimmick. To get some
intuition, we understand the simplest non-classical cone.

Consider a 3-dimensional vector space V spanned by vectors x1, x0, x‘, xa such
that x0 ` x1 “ x‘ ` xa. Let Cl be the cone generated by these vectors. The cone
Cl is isomorphic to its dual cone, but in a non-canonical way. An isomorphism is
given by the map Θ : V ˚ Ñ V

Θpfq “ fpx0qx1 ` fpx‘qpx0 ´ x‘q ` fpx1qx‘.

Indeed, the cone C˚
l has 4 extremal elements, corresponding to generators f0‘, f1‘,

f0a, f1a given by f0‘px0q “ f0‘px‘q “ 0 and f0‘px1q “ f0‘pxaq “ 1 and so on.
One check that the formula is correct since

Θpf0‘q “ x‘, Θpf0aq “ x0, Θpf1‘q “ x1, Θpf1aq “ x1 ` x0 ´ x‘ “ xa

Proposition 5. The cone ClbmaxCl has 24 extreme rays

‚ 16 extreme rays of rank 1, of the form xi b xj,
‚ 8 extreme rays of rank 3, of the form

x1 b xa ` px0 ´ x‘q b xb ` x‘ b xc

where xa, xb, xc are consecutive vertices of the quadrangle tx0, x‘, x1, xau.

Exercise 5. If x1 is extremal in C1 and x2 is extremal in C2, then x1bx2 is extremal
in C1bminC2 and in C1bmaxC2.

We first consider the cone PpCl,Clq of positive maps from Cl to Cl. This cone
is canonically isomorphic to C˚

lbmaxCl, and an isomorphism from PpCl,Clq to
ClbmaxCl is given by

Φ ÞÑ Φpx0q b x1 ` Φpx‘q b px0 ´ x‘q ` Φpx1q b x‘

The cone PpCl,Clq is isomorphic to C4
l X H, where H Ă V 4 is the subspace

given by quadruples pa, b, c, dq such that a ` c “ b ` d. Let Φ be an extreme ray
generator. We show that Φ has either rank 1 or corresponds to a symmetry of the
square, of the form

Φpx0q “ λya, Φpx‘q “ λyb, Φpx1q “ λyc

(i) rankΦ “ 3. We claim that Φ maps extreme rays to extreme rays. Once the
claim is proved, we obtain that Φpxiq “ λixσpiq for a permutation σ P S4 and
λi ą 0. The linearity of Φ implies that λ1 “ λ2 “ λ3 “ λ4, and it is clear that Φ
must be of the form given.

To prove the claim, assume by contradiction that Φpxiq is not on an extreme ray
for some i; without loss of generality assume i “ a. There exists z not collinear
with Φpxaq such that Φpxaq`δz P C for |δ| small enough. Because Φ has full rank,
we may write z “ α0Φpx0q ` α1Φpr1q ` α‘Φpr‘q, and the vector α is not collinear
to p1,´1, 1q. For δ small enough (positive or negative), the map given by

x1 ÞÑ p1`δα1qΦpx1q, x2 ÞÑ p1´δα2qΦpx2q, x3 ÞÑ p1`δα3qΦpx3q, x4 ÞÑ Φpx4q`δz

is positive; showing that Φ is not extremal — a contradiction.
(ii) rankΦ ď 2. By Cariello’s theorem, such a Φ must be of rank 1 and of the

form given by the Proposition.
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3. Lecture 3

3.1. Square states. Given a proper cone C Ă V , a family of square states for C
is a quadruple px0, x1, x‘, xaq of nonzero elements in C such that

(1) x0 ` x1 “ x‘ ` xa,
(2) There exists a quadruple pf0, f1, f‘, faq P pC˚q4 such that

(a) f0 ` f1 “ f‘ ` fa,
(b) f0px0q “ f1px1q “ f‘px‘q “ fapxaq “ 0,
(c) fi ` fj P intpC˚q for any i ‰ j.

In this definition, we may weaken (1) and (2a) to

rx0, x1s X rx‘, xas ‰ H, rf0, f1s X rf‘, fas ‰ H,

since we may then replace pxiq and pfiq by suitable multiples to obtain (1) and (2a).

Example 3. If C “ PSDpC2q, a family of square states is given by

x0 “ |0yx0|, x1 “ |1yx1|, x‘ “ |`yx`|, xa “ |´yx´|

with |˘y “ 1?
2

p|0y ˘ |1yq.

We are going to prove separately the following two results

Theorem 2 (Theorem A). A proper cone C is nonclassical iff there exists a family
of square states for C.

One direction is easy: a classical cone does not have square-like states. Indeed
assume that x0 ` x1 “ x‘ ` xa with pxiq in a classical cone C. By the decompo-
sition property (which can be proved coordinatewise, reducing in a 1-dimensional
problem), there exist x0‘, x0a, x1‘, x1a in C such that

x0 “ x0‘ ` x0a, x1 “ x1‘ ` x1a, x‘ “ x0‘ ` x1‘, xa “ x0a ` x1a

We have f1px0‘q ď f1px0q “ 0 and so on, so pf1 ` faqpx0‘q “ 0 and therefore
x0‘ “ 0. By similar arguments, we come quickly to the fact that x0 “ x1 “ x‘ “

xa “ 0.

Theorem 3 (Theorem B). Let C1 and C2 be two classical cones, and pxiq be square
states for C1 and pyiq be square states for C2. The element

ω “ x0 b y‘ ´ x‘ b y‘ ` x‘ b y0 ` x1 b y1

belongs to C1bmaxC2 but not to C1bminC2, and therefore the pair pC1,C2q is entan-
gleable.

4. Proof of Theorem A

4.1. Affine diameters. A segment ra, bs of a convex body K Ă Rn is an affine
diameter if there exists a nonconstant linear form g which is maximal on K at a
and minimal on K at b.

Lemma 4 (Hammer, 1963). If n ě 1, K Ă Rn is a convex body and any z P K,
there is an affine diameter ra, bs for K such that z P ra, bs.

Proof. Take r ě 0 maximal such that ´rK Ă K. By maximality, there is a point
a P Bp´rKq X BK, and there is a nonzero linear form f which is maximal at a on
both ´rK and K. If b “ ´ra, then ra, bs is an affine diameter containing 0. □
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4.2. Exposed vs extreme points. A face F of a convex body K is a convex
subset F Ă K such that if x P F can be written as x “ λx1 ` p1 ´ λqx2 then
x1, x2 P F . An exposed face is a face of the form K X H where H is a tangent
hyperplane. Not every face is exposed (stadium example), but almost. Say that
x P K is a d-extreme point (resp. d-exposed point) if it belongs to a d-dimensional
face (resp. exposed face). Then

Theorem 5 (Straszewicz (d “ 0), Asplund). Any d-extreme point is the limit of a
sequence of d-exposed points.

We now complete the proof and introduce the parameter δpKq as the minimum
dimension d such the convex hull of an extreme point and a d-extreme point in-
tersects intpKq. By the Straszewicz–Asplund theorem, we may replace extreme by
exposed in this definition. The key lemma (not proved here) is

Lemma 6. If K is a convex body in Rn which is not a simplex, then δpKq ă n´1.

4.3. Proof of Theorem A. Let C be a non-classical cone with K “ C X H as a
base, with H “ th “ 1u an affine hyperplane. Set d “ δpKq. Up to replacing K by
a projective image, we may assume that there is a linear form f such that

fpx0q “ min
K

f ă max
K

f

with x0 P K an exposed point and F “ K X f´1pα1q an exposed face of dimension
d. We denote by W Ă H the affine subspace generated by x0 and F . We have
dimW “ d` 1 ă dimpHq. One can check (using maximality in the definition of δ)
W XK “ convpx0, F q.

Let p be an affine map on H such that p´1pzq “ W , so the rank of p is ě 1.
Observe that z P intpppKqq. By Hammer’s lemma, there is a nonconstant affine
map γ such that minimal on ppKq at ya and maximal at y‘, such that z “ λya `

p1 ´ λqy‘. Write ya “ ppxaq and y‘ “ ppx‘q. The point x “ λxa ` p1 ´ λqx‘

satisfies ppxq “ z hence belongs to K X W and can be written as µx0 ` p1 ´ µqx1
for some x1 P F . This gives square states for C.

If we denote g “ γ ˝ p, then

gpxaq “ min
K

g ă gpx0q “ gpx1q ă max
K

g “ gpx‘q.

This gives square states for C: consider the functionals

f0 “ f ´ fpx0qh, f1 “ fpx1qh´ f, fa “ g ´ gpxaq, f‘ “ gpx‘q ´ g

4.4. Proof of Theorem B. To show that ω does not belong to C1bmaxC2, we
construct a Bell inequality.

Let’s start with the most famous Bell inequality.

Lemma 7. If |s1| ď A1, |t1| ď A1, |s2| ď A2, |t2| ď A2 then

|s1s2 ` s1t2 ` t1s2 ´ t2t2| ď 2A1A2.

If moreover p|s1|, |t1|q ‰ pA1, A1q and p|s2|, |t2|q ‰ pA2, A2q then

|s1s2 ` s1t2 ` t1s2 ´ t2t2| ă 2A1A2.

Given α1, β1 in V ˚
1 and α2, β2 in V ˚

2 , we may define

CHSHpα1, β1, α2, β2q “ α1 b α2 ` α1 b β2 ` β1 b α2 ´ β1 b β2 P V ˚
1 b V ˚

2 .
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Let pfiq P C˚
1 and pgiq P C˚

2 as in the definition of square-like states. We consider
the linear form

λ “ 2pf0 ` f1q b pg0 ` g1q ´ CHSHpf0 ´ f1, f‘ ´ fa, g0 ´ g1, g‘ ´ gaq

For every x1 P C1zt0u and x2 P C2zt0u, we have

(1) |pf0 ´ f1qpx1q| ď A1, |pf‘ ´ faqpx1q| ď A1

(2) |pg0 ´ g1qpx2q| ď A2, |pg‘ ´ gaqpx2q| ď A2

for
A1 “ pf0 ` f1qpx1q “ pf‘ ` faqpx1q,

A2 “ pg0 ` g1qpx2q “ pg‘ ` gaqpx2q.

Moreover, since at most one of the numbers pfipx1qq is zero, at least one inequality in
(1) is strict. The same applies to (2). It follows from Lemma 7 that λpx1 bx2q ą 0.
It follows that λpzq ą 0 for any nonzero z P C1bminC2.

On the other hand, a very long but not difficult computation shows that

λpωq “ 4pf0px‘q ´ f‘px0qqpg0py‘q ´ g‘py0qq.

We may assume, up to replacing p0, 1,‘,aq by p‘,a, 0, 1q, that λpωq ď 0.
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