ENTANGLEMENT BETWEEN CONES

GUILLAUME AUBRUN

Abstract. Lectures given during the conferences "TENSORS 2024" at the Institut Henri Poincaré

1. LECTURE 1

We work in a finite-dimensional real vector space V .

1.1. Cones. A subset $C \subset V$ is a (convex) cone if $sx + ty \in C$ whenever $s, t \in \mathbb{R}^+$ and $x, y \in \mathsf{C}$. We usually assume some conditions on C . We say that C is

- \bullet generating if C spans V as a vector space, or equivalently is not contained in a proper subspace of V, or again if $C - C = \{x - y : x, y \in C\} = V$.
- \bullet *salient* if $\mathsf C$ does not contain a line, or equivalently if 0 is an extreme point of C, or again if $C \cap (-C) = \{0\}.$
- *proper* if C is closed, generating and salient.

Two cones $C_1 \subset V_1$ and $C_2 \subset V_2$ are isomorphic if there exist a linear bijection $\Phi: V_1 \to V_2$ such that $\Phi(C_1) = C_2$.

Here are some example of cones.

(1) The positive orthant $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x_i \geq 0\}$ is a proper cone in the vector space \mathbb{R}^n . A cone isomorphic to \mathbb{R}^n_+ is called classical. Equivalently, C is classical if there is a basis (e_1, \ldots, e_n) of the vector space V which generates C, is the sense that $\binom{n}{k}$ +

$$
\mathsf{C} = \left\{ \sum_{i=1}^n \lambda_i e_i \; : \; \lambda_i \geqslant 0 \right\}.
$$

- (2) The Lorentz cone $\mathsf{L}_n = \{x \in \mathbb{R}^n : x_n \geqslant (x_1^2 + \cdots + x_{n-1}^2)^{1/2}\}.$
- (3) The cone of positive semi-definite operators over a real or complex Hilbert space $PSD(H)$ is a proper cone in the vector space Herm (H) of Hermitian operators. If $\dim(H) = n$ then the dimension of PSD(H) equals $n(n + 1)/2$ in the real case and n^2 in the complex case.
- (4) If X is a finite-dimensional normed space, the cone over X is the subset of $X \times \mathbf{R}$ defined as

$$
C_X = \{(x, t) : t \geq \|x\|\}
$$

Exercise 1. All two-dimensional proper cones are classical. The cones $PSD(\mathbf{R}^2)$ and L_3 are isomorphic. The cones $\mathsf{PSD}(\mathbb{C}^2)$ and L_4 are isomorphic.

1.2. Extreme rays. A nonzero vector $x \in C$ is extremal if, whenever $x = x' + x''$ for x', x'' in C, then x' and x'' are proportional to x. If x is extremal, the set $\{\lambda x : \lambda \geq 0\}$ is called an extreme ray of C. Theorem: any proper cone is the convex hull of its extreme rays.

Exercise 2. Show that any d-dimensional proper cone has $\geq d$ extreme rays, and that any proper cone with d extreme rays is classical. Show that all 3-dimensional proper cones with 4 extreme rays are isomorphic.

1.3. Duality. Let $C \subset V$ be a cone, and V^* be the dual vector space. We define the dual cone as

$$
C^* = \{ f \in V^* \; : \; f(x) \geq 0 \text{ for every } x \in C \}.
$$

Since V is finite-dimensional, we may identify V^{**} with V . Then

Proposition 1. If $C \subset V$ is a nonempty closed convex cone, then $C^{**} = C$.

Proof. A point x belongs to C^{**} iff $f(x) \geq 0$ for every $f \in C^*$, so the inclusion $C \subset \mathbb{C}^{**}$ is obvious. If $x \notin \mathbb{C}$, we may find by the Hahn–Banach separation theorem (since C is closed and convex) a linear form $f \in V^*$ such that $f(x) < \inf f(C)$. Since $f(\mathsf{C})$ is a nonempty cone in **R**, since is only possible if that infimum equals 0. This means that $f \in C^*$ and therefore $x \notin C$ $**$.

Duality reverses order: if $C_1 \subset C_2$ then $C_1^* \supset C_2^*$. If W is a linear subspace (a very special kind of closed convex cone), then W^* is the annihilator of W. In particular, it follows that, for a closed convex cone C, the cone C is generating iff the dual cone C^* is salient.

Proposition 2. Let $C \subset V$ be a closed convex cone. A linear form $f \in V^*$ belongs to the interior of C^* iff we have $f(x) > 0$ for every $x \in C \setminus \{0\}.$

Proof. Consider an arbitrary norm $\|\cdot\|$ on V and let $\|\cdot\|_*$ be the dual norm on V^* . The key is to observe that, for $f \in V^*$

$$
\inf_{\|h\|_{\ast}\leq 1} (f+\varepsilon h)(x) = f(x) - \varepsilon \|x\|.
$$

and therefore $B(f, \varepsilon) \subset \mathbb{C}^*$ iff $f(x) \geq \varepsilon ||x||$ for every $x \in \mathbb{C}$. By homogeneity, this is equivalent to say that f is positive on the compact set $C \cap S$ (where S is the unit \Box sphere).

The dual version is: $x \in \text{int}(\mathsf{C})$ iff $f(x) > 0$ for any nonzero $f \in \mathsf{C}^*$. In particular, if $x \in \partial \mathsf{C}$, there exists a nonzero $f \in \mathsf{C}^*$ such that $f(x) = 0$.

A base for a cone $C \subset V$ is a convex set $B \subset C$ such that the map $(t, x) \mapsto tx$ is a bijection from $(0, \infty) \times B$ to C.

Proposition 3. Let C be a proper cone. For any $f \in int(C^*)$, the set $\{x \in C$: $f(x) = 1$ is a base for C, which is compact.

Proof. Take $f \in \text{int}(\mathbb{C}^*)$. Any $x \in \mathbb{C}\backslash\{0\}$ can be written as $\lambda \cdot x/\lambda$ for $\lambda = f(x)$, hence $C \cap \{f = 1\}$ is a base. Use local compactness of the ambiant space to conclude. \Box

If K_1 and K_2 are two different bases for C, there is a projective transformation $p: K_1 \to K_2$ mapping K_1 to K_2 .

Examples (1)-(3) of cones given earlier have a stronger property: any different bases are related by an affine transformation. This is related to the fact that the cones are homogeneous (a cone C is homogeneous if the group of automorphisms act transitively on $\text{int}(C)$, which is very special situation.

If V is equipped with an inner product, any element of V^* can be realized as $x \mapsto \langle x, y \rangle$ for a unique $y \in V$. This allows to identify V and V^* . This is the case for the space \mathbb{R}^n (using the usual inner product) and for the space Herm (H) , using the Hilbert–Schmidt inner product $\langle A, B \rangle = \text{Tr}(AB)$.

Exercise 3. Show that with the above identification, we have $(\mathbf{R}_{+}^{n})^* = \mathbf{R}_{+}^{n}$, $\mathsf{L}_{n}^* = \mathsf{L}_{n}$ and $PSD(H)^* = PSD(H)$.

Show that for every normed space X, the cone $(C_X)^*$ is isomorphic to C_{X^*} .

1.4. Tensor products of cones. Suppose now that we have two proper cones $C_1 \subset V_1$ and $C_2 \subset V_2$ and we want to define $C_1 \otimes C_2$. There are two meaningful definitions.

The *minimal tensor product* of C_1 and C_2 is defined as

 $C_1 \otimes_{\min} C_2 = \text{conv}\{x_1 \otimes x_2 : x_1 \in C_1, x_2 \in C_2\}.$

Example 1. Given Hilbert spaces H_1 and H_2 , there is a natural embedding

 $\text{Herm}(H_1) \otimes \text{Herm}(H_2) \longrightarrow \text{Herm}(H_1 \otimes H_2)$

This embedding is surjective in the complex case but not in the real case (compare dimensions). In the complex case, we identify $\text{Herm}(H_1) \otimes \text{Herm}(H_2)$ and Herm $(H_1 \otimes H_2)$. The cone PSD $(H_1) \otimes_{\min}$ PSD (H_2) is the cone of separable operators. By homogeneity, we may restrict to states (positive operators with trace 1). A state is separable iff it is a convex combination of pure product states.

Exercise 4. If C_1 and C_2 are proper, so is $C_1 \otimes_{\min} C_2$.

There is a dual notion, the *maximal tensor product* of C_1 and C_2 defined as

 $C_1 \otimes_{\text{max}} C_2 = \{ z \in V_1 \otimes V_2 : (f_1 \otimes f_2)(z) \geq 0 \text{ for every } f_1 \in C_1^*, f_2 \in C_2^* \},\$

or more succinctly

$$
\mathsf{C}_1 {\otimes_{\max}} \mathsf{C}_2 = (\mathsf{C}_1^* {\otimes_{\min}} \mathsf{C}_2^*)^*.
$$

Example 2. Given Hilbert spaces H_1 and H_2 , $PSD(H_1) \otimes_{\text{max}} PSD(H_2)$ identifies with the cone of block-positive operators. An operator $T \in \text{Herm}(H_1 \otimes H_2)$ is said to be block-positive if

$$
\langle x_1 \otimes x_2 | T | x_1 \otimes x_2 \rangle \geqslant 0
$$

for every $x_1 \in H_1$ and $x_2 \in H_2$. They are sometimes called entanglement witnesses in quantum information. We have strict inclusions

$$
\mathsf{PSD}(\mathsf{C}^2)\otimes_{\min}\mathsf{PSD}(\mathsf{C}^2)\subsetneq\mathsf{PSD}(\mathsf{C}^2\otimes\mathsf{C}^2)\subsetneq\mathsf{PSD}(\mathsf{C}^2)\otimes_{\max}\mathsf{PSD}(\mathsf{C}^2).
$$

To show that the left inclusion is strict, consider the entangled state $|\psi\rangle\langle\psi|$ with $|\psi\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|00\rangle + |11\rangle)$. To show that the right inclusion is strict, consider the operator Id $- 2|\psi\rangle\langle\psi|$ which is block-positive but not positive.

For general convex cones C_1 and C_2 , it is obvious that

$$
\mathsf{C}_1 {\otimes_{\min}} \mathsf{C}_2 \subset \mathsf{C}_1 {\otimes_{\max}} \mathsf{C}_2.
$$

Let's say that the pair (C_1, C_2) is nuclear if $C_1 \otimes_{\min} C_2 = C_1 \otimes_{\max} C_2$, and entangleable if $C_1 \otimes_{\min} C_2 \subsetneq C_1 \otimes_{\max} C_2$.

The goal of these lectures is to prove the following result, confirming a conjecture by Barker in the late 1970's.

Theorem 1 (Aubrun–Lami–Plávala–Palazuelos). Let $C_1 \subset V_1$ and $C_2 \subset V_2$ be two proper cones. Then the pair (C_1, C_2) is nuclear if and only if C_1 or C_2 is classical.

2. LECTURE 2

Consider now the cone $P(C_1, C_2)$ of positive operators from C_1 to C_2 (i.e., linear maps $\Phi \in L(V_1, V_2)$ such that $\Phi(\mathsf{C}_1) \subset \mathsf{C}_2$. The space $L(V_1, V_2)$ is canonically isomorphic to $V_1^* \otimes V_2$. Under this isomorphism, the cone $\mathsf{P}(\mathsf{C}_1, \mathsf{C}_2)$ corresponds to $C_1^* \otimes_{\text{max}} C_2$. What corresponds to $C_1^* \otimes_{\text{min}} C_2$ is the cone of entanglement-breaking or "mention measure-and-prepare" maps, of the form
 $\phi(x) = \sum_i f_i(x)x_i$

$$
\phi(x) = \sum_{i} f_i(x) x_i
$$

with $f_i \in \mathsf{C}_1^*$ and $x_i \in \mathsf{C}_2$.

One direction is easy: assuming that C_1 is classical, we show that $C_1\otimes_{\max}C_2 \subset$ $C_1 \otimes_{\min} C_2$. Let (e_i) be a basis of the vector space V_1 and (e_i^*) be the dual basis. Observe that $\varepsilon_i^* \in \mathsf{C}^*$. We may write z as

$$
z=\sum_i e_i\otimes y_i
$$

for (y_i) in V_2 . For any $f \in C_2^*$, we have

$$
0 \leqslant (e_i^* \otimes f)(z) = f(y_i).
$$

Since this holds for every $f \in C_2^*$, we conclude that $y_i \in C_2^{**} = C_2$. This shows that $z \in \mathsf{C}_1 \otimes_{\min} \mathsf{C}_2.$

Given two non-classical cones C_1 and C_2 , we need to find an "entangled" vector in $C_1\otimes_{\max}C_2$ but not in $C_1\otimes_{\min}C_2$. We first observe that such a vector cannot be of rank 2.

Proposition 4 (Cariello). Let $C_1 \subset V_1$ and $C_2 \subset V_2$ be proper cones. If $z \in V_1$ $C_1\otimes_{\text{max}}C_2$ has rank ≤ 2 , then $z \in C_1\otimes_{\text{min}}C_2$.

Proof. If $z = x_1 \otimes x_2$, then for every $f \in C_2^*$ we have $f(x_2)x_1 \in C_1$, so elements C_2^* have a constant sign on x_2 . We may assume that this sign is positive, so that $x_2 \in \mathsf{C}_2$ and $x_1 \in \mathsf{C}_1$.

Assume that z has rank 2 and that $z \in \text{int}(\mathsf{C}_1 \otimes_{\text{max}}\mathsf{C}_2)$. Write $z = x_1 \otimes x_2 + y_1 \otimes y_2$ and let $E_i = \text{span}(x_i, y_i)$. The space E_i intersects the interior of C_i . The 2dimensional proper cone $\mathsf{C}_i \cap E_i$ has two generators s_i and t_i . Since s_i and t_i belong to the boundary of C_i , by the Hahn–Banach theorem there exists nonzero s_i^* and t_i^* in C_i^* such that $s_i^*(s_i) = t_i^*(t_i) = 0$. We have $s_i^*(t_i) > 0$ and $t_i^*(s_i) > 0$ (because $s_i + t_i \in \text{int}(\mathsf{C}_i)$) and we may rescale such that $s_i^*(t_i) = t_i^*(s_i) = 1$. The map

$$
\Phi_i: x \mapsto s_i^*(x)t_i + t_i^*(x)s_i
$$

fixes s_i and t_i and hence is the identity on E_i . Hence,

$$
z = (\Phi_1 \otimes \Phi_2)(z)
$$

= $(s_1^* \otimes s_2^*)(z)t_1 \otimes t_2 + (s_1^* \otimes t_2^*)(z)t_1 \otimes s_2$
+ $(t_1^* \otimes s_2^*)(z)s_1 \otimes t_2 + (t_1^* \otimes t_2^*)(z)s_1 \otimes s_2$

showing that $z \in C_1 \otimes_{\min} C_2$.

For the general case, fix $u_i \in \text{int}(\mathsf{C}_i)$ and $u_i^* \in \text{int}(\mathsf{C}_i^*)$. The vector

$$
z_{\varepsilon} = (\mathrm{Id} + \varepsilon |u_1\rangle\langle u_1^*|) \otimes (\mathrm{Id} + \varepsilon |u_2\rangle\langle u_2^*|)(z)
$$

belongs to $int(C_1\otimes_{max}C_2)$ and therefore to $C_1\otimes_{min}C_2$ by the previous paragraph, and tends to z and $\varepsilon \to 0$.

In order to prove the theorem, we need to build inside any non-classical cone something which looks like entanglement. Here is the key gimmick. To get some intuition, we understand the simplest non-classical cone.

Consider a 3-dimensional vector space V spanned by vectors $x_1, x_0, x_{\oplus}, x_{\ominus}$ such that $x_0 + x_1 = x_{\oplus} + x_{\ominus}$. Let C_{\square} be the cone generated by these vectors. The cone C_{\Box} is isomorphic to its dual cone, but in a non-canonical way. An isomorphism is given by the map $\Theta: V^* \to V$

$$
\Theta(f) = f(x_0)x_1 + f(x_{\oplus})(x_0 - x_{\oplus}) + f(x_1)x_{\oplus}.
$$

Indeed, the cone C^*_{\Box} has 4 extremal elements, corresponding to generators $f_{0\oplus}, f_{1\oplus},$ $f_{0\ominus}$, $f_{1\ominus}$ given by $f_{0\oplus}(x_0) = f_{0\oplus}(x_{\oplus}) = 0$ and $f_{0\oplus}(x_1) = f_{0\oplus}(x_{\ominus}) = 1$ and so on. One check that the formula is correct since

$$
\Theta(f_{0\oplus})=x_{\oplus},\ \Theta(f_{0\ominus})=x_0,\ \Theta(f_{1\oplus})=x_1,\ \Theta(f_{1\ominus})=x_1+x_0-x_{\oplus}=x_{\ominus}
$$

Proposition 5. The cone $C_{\Box}\otimes_{\text{max}}C_{\Box}$ has 24 extreme rays

- \bullet 16 extreme rays of rank 1, of the form $x_i \otimes x_j$,
- \bullet 8 extreme rays of rank 3, of the form

$$
x_1 \otimes x_a + (x_0 - x_{\oplus}) \otimes x_b + x_{\oplus} \otimes x_c
$$

where x_a, x_b, x_c are consecutive vertices of the quadrangle $\{x_0, x_{\oplus}, x_1, x_{\ominus}\}.$

Exercise 5. If x_1 is extremal in C_1 and x_2 is extremal in C_2 , then $x_1 \otimes x_2$ is extremal in $C_1\otimes_{\min}C_2$ and in $C_1\otimes_{\max}C_2$.

We first consider the cone $P(C_{\square}, C_{\square})$ of positive maps from C_{\square} to C_{\square} . This cone is canonically isomorphic to $C^*_{\Box}\otimes_{\text{max}}C_{\Box}$, and an isomorphism from $P(C_{\Box}, C_{\Box})$ to $C_{\square}\otimes_{\text{max}}C_{\square}$ is given by

$$
\Phi \mapsto \Phi(x_0) \otimes x_1 + \Phi(x_{\oplus}) \otimes (x_0 - x_{\oplus}) + \Phi(x_1) \otimes x_{\oplus}
$$

The cone $P(C_{\square}, C_{\square})$ is isomorphic to $C_{\square}^4 \cap H$, where $H \subset V^4$ is the subspace given by quadruples (a, b, c, d) such that $a + c = b + d$. Let Φ be an extreme ray generator. We show that Φ has either rank 1 or corresponds to a symmetry of the square, of the form

$$
\Phi(x_0) = \lambda y_a, \quad \Phi(x_{\oplus}) = \lambda y_b, \quad \Phi(x_1) = \lambda y_c
$$

(i) rank $\Phi = 3$. We claim that Φ maps extreme rays to extreme rays. Once the claim is proved, we obtain that $\Phi(x_i) = \lambda_i x_{\sigma(i)}$ for a permutation $\sigma \in \mathfrak{S}_4$ and $\lambda_i > 0$. The linearity of Φ implies that $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4$, and it is clear that Φ must be of the form given.

To prove the claim, assume by contradiction that $\Phi(x_i)$ is not on an extreme ray for some i; without loss of generality assume $i = \bigoplus$. There exists z not collinear with $\Phi(x_{\ominus})$ such that $\Phi(x_{\ominus}) + \delta z \in \mathbb{C}$ for $|\delta|$ small enough. Because Φ has full rank, we may write $z = \alpha_0 \Phi(x_0) + \alpha_1 \Phi(r_1) + \alpha_{\oplus} \Phi(r_{\oplus})$, and the vector α is not collinear to $(1, -1, 1)$. For δ small enough (positive or negative), the map given by

$$
x_1 \mapsto (1 + \delta \alpha_1) \Phi(x_1), \quad x_2 \mapsto (1 - \delta \alpha_2) \Phi(x_2), \quad x_3 \mapsto (1 + \delta \alpha_3) \Phi(x_3), \quad x_4 \mapsto \Phi(x_4) + \delta z
$$

is positive; showing that Φ is not extremal — a contradiction.

(ii) rank $\Phi \leq 2$. By Cariello's theorem, such a Φ must be of rank 1 and of the form given by the Proposition.

3. Lecture 3

3.1. Square states. Given a proper cone $C \subset V$, a family of square states for C is a quadruple $(x_0, x_1, x_{\oplus}, x_{\ominus})$ of nonzero elements in C such that

- (1) $x_0 + x_1 = x_{\oplus} + x_{\ominus}$,
- (2) There exists a quadruple $(f_0, f_1, f_{\oplus}, f_{\ominus}) \in (\mathbb{C}^*)^4$ such that
	- (a) $f_0 + f_1 = f_{\bigoplus} + f_{\bigominus}$, (b) $f_0(x_0) = f_1(x_1) = f_{\bigoplus}(x_{\bigoplus}) = f_{\bigominus}(x_{\bigominus}) = 0,$
	- (c) $f_i + f_j \in \text{int}(\mathsf{C}^*)$ for any $i \neq j$.

In this definition, we may weaken (1) and (2a) to

$$
[x_0, x_1] \cap [x_{\oplus}, x_{\ominus}] \neq \emptyset, \ \ [f_0, f_1] \cap [f_{\oplus}, f_{\ominus}] \neq \emptyset,
$$

since we may then replace (x_i) and (f_i) by suitable multiples to obtain (1) and (2a).

Example 3. If $C = PSD(C^2)$, a family of square states is given by

$$
x_0 = |0\rangle\langle 0|, x_1 = |1\rangle\langle 1|, x_{\oplus} = |+\rangle\langle +|, x_{\ominus} = |-\rangle\langle -|
$$

with $\ket{\pm} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle \pm |1\rangle).$

We are going to prove separately the following two results

Theorem 2 (Theorem A). A proper cone C is nonclassical iff there exists a family of square states for C.

One direction is easy: a classical cone does not have square-like states. Indeed assume that $x_0 + x_1 = x_{\bigoplus} + x_{\bigominus}$ with (x_i) in a classical cone C. By the decomposition property (which can be proved coordinatewise, reducing in a 1-dimensional problem), there exist $x_{0\oplus}, x_{0\ominus}, x_{1\oplus}, x_{1\ominus}$ in C such that

$$
x_0 = x_{0\oplus} + x_{0\ominus}, x_1 = x_{1\oplus} + x_{1\ominus}, x_{\oplus} = x_{0\oplus} + x_{1\oplus}, x_{\ominus} = x_{0\ominus} + x_{1\ominus}
$$

We have $f_1(x_{0\oplus}) \leq f_1(x_0) = 0$ and so on, so $(f_1 + f_{\ominus})(x_{0\oplus}) = 0$ and therefore $x_{0\oplus} = 0$. By similar arguments, we come quickly to the fact that $x_0 = x_1 = x_{\oplus}$ $x_{\ominus} = 0.$

Theorem 3 (Theorem B). Let C_1 and C_2 be two classical cones, and (x_i) be square states for C_1 and (y_i) be square states for C_2 . The element

$$
\omega = x_0 \otimes y_{\oplus} - x_{\oplus} \otimes y_{\oplus} + x_{\oplus} \otimes y_0 + x_1 \otimes y_1
$$

belongs to $C_1\otimes_{\max}C_2$ but not to $C_1\otimes_{\min}C_2$, and therefore the pair (C_1, C_2) is entangleable.

4. Proof of Theorem A

4.1. **Affine diameters.** A segment [a, b] of a convex body $K \subset \mathbb{R}^n$ is an affine diameter if there exists a nonconstant linear form g which is maximal on K at a and minimal on K at b .

Lemma 4 (Hammer, 1963). If $n \geq 1$, $K \subset \mathbb{R}^n$ is a convex body and any $z \in K$, there is an affine diameter [a, b] for K such that $z \in [a, b]$.

Proof. Take $r \geq 0$ maximal such that $-rK \subset K$. By maximality, there is a point $a \in \partial(-rK) \cap \partial K$, and there is a nonzero linear form f which is maximal at a on both $-rK$ and K. If $b = -ra$, then $[a, b]$ is an affine diameter containing 0. \Box 4.2. Exposed vs extreme points. A face F of a convex body K is a convex subset $F \subset K$ such that if $x \in F$ can be written as $x = \lambda x' + (1 - \lambda)x''$ then $x', x'' \in F$. An exposed face is a face of the form $K \cap H$ where H is a tangent hyperplane. Not every face is exposed (stadium example), but almost. Say that $x \in K$ is a d-extreme point (resp. d-exposed point) if it belongs to a d-dimensional face (resp. exposed face). Then

Theorem 5 (Straszewicz $(d = 0)$, Asplund). Any d-extreme point is the limit of a sequence of d-exposed points.

We now complete the proof and introduce the parameter $\delta(K)$ as the minimum dimension d such the convex hull of an extreme point and a d -extreme point intersects int (K) . By the Straszewicz–Asplund theorem, we may replace extreme by exposed in this definition. The key lemma (not proved here) is

Lemma 6. If K is a convex body in \mathbb{R}^n which is not a simplex, then $\delta(K) < n-1$.

4.3. Proof of Theorem A. Let C be a non-classical cone with $K = C \cap H$ as a base, with $H = \{h = 1\}$ an affine hyperplane. Set $d = \delta(K)$. Up to replacing K by a projective image, we may assume that there is a linear form f such that

$$
f(x_0) = \min_K f < \max_K f
$$

with $x_0 \in K$ an exposed point and $F = K \cap f^{-1}(\alpha_1)$ an exposed face of dimension d. We denote by $W \subset H$ the affine subspace generated by x_0 and F. We have $\dim W = d + 1 < \dim(H)$. One can check (using maximality in the definition of δ) $W \cap K = \text{conv}(x_0, F).$

Let p be an affine map on H such that $p^{-1}(z) = W$, so the rank of p is ≥ 1 . Observe that $z \in \text{int}(p(K))$. By Hammer's lemma, there is a nonconstant affine map γ such that minimal on $p(K)$ at y_{\ominus} and maximal at y_{\oplus} , such that $z = \lambda y_{\ominus} +$ $(1 - \lambda)y_{\oplus}$. Write $y_{\ominus} = p(x_{\ominus})$ and $y_{\oplus} = p(x_{\oplus})$. The point $x = \lambda x_{\ominus} + (1 - \lambda)x_{\oplus}$ satisfies $p(x) = z$ hence belongs to $K \cap W$ and can be written as $\mu x_0 + (1 - \mu)x_1$ for some $x_1 \in F$. This gives square states for C.

If we denote $g = \gamma \circ p$, then

$$
g(x_{\ominus}) = \min_{K} g < g(x_0) = g(x_1) < \max_{K} g = g(x_{\oplus}).
$$

This gives square states for C: consider the functionals

$$
f_0 = f - f(x_0)h
$$
, $f_1 = f(x_1)h - f$, $f_{\ominus} = g - g(x_{\ominus})$, $f_{\oplus} = g(x_{\oplus}) - g$

4.4. Proof of Theorem B. To show that ω does not belong to $C_1\otimes_{\max}C_2$, we construct a Bell inequality.

Let's start with the most famous Bell inequality.

Lemma 7. If $|s_1| \leq A_1$, $|t_1| \leq A_1$, $|s_2| \leq A_2$, $|t_2| \leq A_2$ then

 $|s_1s_2 + s_1t_2 + t_1s_2 - t_2t_2| \leq 2A_1A_2.$

If moreover $(|s_1|, |t_1|) \neq (A_1, A_1)$ and $(|s_2|, |t_2|) \neq (A_2, A_2)$ then

 $|s_1s_2 + s_1t_2 + t_1s_2 - t_2t_2| < 2A_1A_2.$

Given α_1, β_1 in V_1^* and α_2, β_2 in V_2^* , we may define

$$
\mathrm{CHSH}(\alpha_1, \beta_1, \alpha_2, \beta_2) = \alpha_1 \otimes \alpha_2 + \alpha_1 \otimes \beta_2 + \beta_1 \otimes \alpha_2 - \beta_1 \otimes \beta_2 \in V_1^* \otimes V_2^*.
$$

Let $(f_i) \in \mathsf{C}_1^*$ and $(g_i) \in \mathsf{C}_2^*$ as in the definition of square-like states. We consider the linear form

 $\lambda = 2(f_0 + f_1) \otimes (g_0 + g_1) - \text{CHSH}(f_0 - f_1, f_{\bigoplus} - f_{\ominus}, g_0 - g_1, g_{\bigoplus} - g_{\ominus})$ For every $x_1 \in \mathsf{C}_1 \backslash \{0\}$ and $x_2 \in \mathsf{C}_2 \backslash \{0\}$, we have

(1)
$$
|(f_0 - f_1)(x_1)| \le A_1, \quad |(f_{\bigoplus} - f_{\bigominus})(x_1)| \le A_1
$$

(2)
$$
|(g_0 - g_1)(x_2)| \le A_2, \quad |(g_{\oplus} - g_{\ominus})(x_2)| \le A_2
$$

for

$$
A_1 = (f_0 + f_1)(x_1) = (f_{\bigoplus} + f_{\bigominus})(x_1),
$$

\n
$$
A_2 = (g_0 + g_1)(x_2) = (g_{\bigoplus} + g_{\bigominus})(x_2).
$$

Moreover, since at most one of the numbers $(f_i(x_1))$ is zero, at least one inequality in (1) is strict. The same applies to (2). It follows from Lemma 7 that $\lambda(x_1 \otimes x_2) > 0$. It follows that $\lambda(z) > 0$ for any nonzero $z \in C_1 \otimes_{\min} C_2$.

On the other hand, a very long but not difficult computation shows that

 $\lambda(\omega) = 4(f_0(x_{\oplus}) - f_{\oplus}(x_0))(g_0(y_{\oplus}) - g_{\oplus}(y_0)).$

We may assume, up to replacing $(0, 1, \oplus, \ominus)$ by $(\oplus, \ominus, 0, 1)$, that $\lambda(\omega) \leq 0$.