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1. LECTURE 1
We work in a finite-dimensional real vector space V.

1.1. Comes. A subset C < V is a (convex) cone if sz + ty € C whenever s,t € RT
and z,y € C. We usually assume some conditions on C. We say that C is

e generating if C spans V' as a vector space, or equivalently is not contained
in a proper subspace of V, or again if C— C={z—y : z,ye C} =V,

e salient if C does not contain a line, or equivalently if 0 is an extreme point
of C, or again if C n (—C) = {0}.

e proper if C is closed, generating and salient.

Two cones C; < V; and C; < V5 are isomorphic if there exist a linear bijection
® : V3 — V5 such that ®(Cy) = Cs.
Here are some example of cones.
(1) The positive orthant R} = {x € R™ : x; > 0} is a proper cone in the
vector space R". A cone isomorphic to R} is called classical. Equivalently,
C is classical if there is a basis (e1,...,e,) of the vector space V which
generates C, is the sense that

C={il)\l€z : )\120}

(2) The Lorentz cone L, = {x e R™ : x, > (z? +---+22_,)/?}.

(3) The cone of positive semi-definite operators over a real or complex Hilbert
space PSD(H) is a proper cone in the vector space Herm(H) of Hermitian
operators. If dim(H) = n then the dimension of PSD(H) equals n(n +1)/2
in the real case and n? in the complex case.

(4) If X is a finite-dimensional normed space, the cone over X is the subset of
X x R defined as

Cx ={(z,1) : t =]z}

Exercise 1. All two-dimensional proper cones are classical. The cones PSD(R?)
and L3 are isomorphic. The cones PSD(C?) and L4 are isomorphic.

1.2. Extreme rays. A nonzero vector x € C is extremal if, whenever x = 2’ + 2"
for z/,2” in C, then 2’ and z” are proportional to x. If x is extremal, the set
{Mx : X = 0} is called an extreme ray of C. Theorem: any proper cone is the
convex hull of its extreme rays.



FEzercise 2. Show that any d-dimensional proper cone has > d extreme rays, and
that any proper cone with d extreme rays is classical. Show that all 3-dimensional
proper cones with 4 extreme rays are isomorphic.

1.3. Duality. Let C € V be a cone, and V* be the dual vector space. We define
the dual cone as

C*={feV* : f(x) =0 for every z € C}.
Since V is finite-dimensional, we may identify V** with V. Then
Proposition 1. If C c V is a nonempty closed convex cone, then C** = C.

Proof. A point x belongs to C** iff f(x) = 0 for every f € C*, so the inclusion
C c C** is obvious. If z ¢ C, we may find by the Hahn—Banach separation theorem
(since C is closed and convex) a linear form f € V* such that f(z) < inf f(C). Since
f(C) is a nonempty cone in R, since is only possible if that infimum equals 0. This
means that f € C* and therefore x ¢ C**. O

Duality reverses order: if C; < Cy then C§¥ o Ci. If W is a linear subspace
(a very special kind of closed convex cone), then W* is the annihilator of W. In
particular, it follows that, for a closed convex cone C, the cone C is generating iff
the dual cone C* is salient.

Proposition 2. Let C < V be a closed convex cone. A linear form f e V* belongs
to the interior of C* iff we have f(x) > 0 for every x € C\{0}.

Proof. Consider an arbitrary norm || - || on V and let || - ||« be the dual norm on V*.
The key is to observe that, for fe V*
inf (f+eh)(z) = f(x) —elz|.

i
[R]4<1

and therefore B(f,e) < C* iff f(x) = e|z| for every x € C. By homogeneity, this is
equivalent to say that f is positive on the compact set C n S (where S is the unit
sphere). O

The dual version is: « € int(C) iff f(z) > 0 for any nonzero f € C*. In particular,
if € 0C, there exists a nonzero f € C* such that f(z) = 0.

A base for a cone C < V is a convex set B < C such that the map (¢, z) — tx is
a bijection from (0,0) x B to C.

Proposition 3. Let C be a proper cone. For any f € int(C*), the set {x € C
f(x) =1} is a base for C, which is compact.

Proof. Take f € int(C*). Any x € C\{0} can be written as A\-z/X for A = f(x), hence
Cn{f = 1} is a base. Use local compactness of the ambiant space to conclude. O

If K1 and K> are two different bases for C, there is a projective transformation
p: K1 — K5 mapping K to Ks.

Examples (1)-(3) of cones given earlier have a stronger property: any different
bases are related by an affine transformation. This is related to the fact that the
cones are homogeneous (a cone C is homogeneous if the group of automorphisms
act transitively on int(C)), which is very special situation.

If V' is equipped with an inner product, any element of V* can be realized as
x — {x,y) for a unique y € V. This allows to identify V' and V*. This is the case
for the space R™ (using the usual inner product) and for the space Herm(H ), using
the Hilbert—Schmidt inner product (A, B) = Tr(AB).
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Ezercise 3. Show that with the above identification, we have (R} )* = R, L¥ =L,
and PSD(H)* = PSD(H).

Show that for every normed space X, the cone (Cx)*

is isomorphic to Cxx.

1.4. Tensor products of cones. Suppose now that we have two proper cones
C; V7 and Cy < V4 and we want to define C; ® Co. There are two meaningful
definitions.

The minimal tensor product of C; and Cy is defined as

Cl@minCQ = COHV{Il Rxo @ x1 € Cl, Tg € CQ}
Ezxample 1. Given Hilbert spaces Hi and H,, there is a natural embedding
Herm(H;) ® Herm(Hy) — Herm(H; ® Ha)

This embedding is surjective in the complex case but not in the real case (com-
pare dimensions). In the complex case, we identify Herm(H;) ® Herm(H>) and
Herm(H; ® H3). The cone PSD(H1)®umin PSD(H>) is the cone of separable opera-
tors. By homogeneity, we may restrict to states (positive operators with trace 1).
A state is separable iff it is a convex combination of pure product states.

Ezxercise 4. If C; and Cy are proper, so iS C;{®minCo.

There is a dual notion, the mazximal tensor product of C; and Cy defined as

Ci®maxCa ={2eV1® V2 : (f1® f2)(2) = 0 for every f; € CF, fo e Ci},
or more succinctly
Cl@maxCQ = (Cik@mmcg)*

Ezample 2. Given Hilbert spaces Hy and Ha, PSD(H1)®max PSD(H2) identifies
with the cone of block-positive operators. An operator T' € Herm(H; ® Hs) is said
to be block-positive if

(1 @z2|T|z1 @ x2) = 0

for every x1 € Hy and z9 € Hy. They are sometimes called entanglement witnesses
in quantum information. We have strict inclusions

PSD(C?)®min PSD(C?) < PSD(C? ® C?) & PSD(C?)®max PSD(C?).

To show that the left inclusion is strict, consider the entangled state |¢){(1| with
[y = %(\00} + |11)). To show that the right inclusion is strict, consider the

operator Id — 2|¢)(y| which is block-positive but not positive.
For general convex cones C; and Cs, it is obvious that
C16<>minc2 c C1®maxc2'

Let’s say that the pair (Cy,Cz) is nuclear if C;®minCa = C1®maxCo, and entan-
gleable if Cl@minCQ & C1®maxc2~

The goal of these lectures is to prove the following result, confirming a conjecture
by Barker in the late 1970’s.

Theorem 1 (Aubrun-Lami-Pldvala—Palazuelos). Let C; < Vi and Co < Vo be two
proper cones. Then the pair (Cq,Cs) is nuclear if and only if Cy or Cy is classical.
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2. LECTURE 2

Consider now the cone P(Cy, Cy) of positive operators from C; to Cy (i.e., linear
maps ® € L(Vy,V3) such that ®(C;) < Cg). The space L(Vi,Va) is canonically
isomorphic to V* ® V5. Under this isomorphism, the cone P(Cy, C3) corresponds to
C¥®maxCo. What corresponds to CF®minCo is the cone of entanglement-breaking
or “mention measure-and-prepare” maps, of the form

¢(x) = Z fi(z)x;

with f; € C¥ and z; € Cs.

One direction is easy: assuming that C; is classical, we show that C;®.xCo <
Ci®minC2. Let (e;) be a basis of the vector space V7 and (ef) be the dual basis.
Observe that €f € C*. We may write z as

z = Z €; ®Yi
for (y;) in Vi. For any f e C§, we have
0<(ef ®f)(2) = f(yi)
Since this holds for every f e C¥, we conclude that y; € C5* = Cy. This shows that
2 € C;®minCa.
Given two non-classical cones C; and C,, we need to find an “entangled” vector

in C{®maxCa but not in C;®minCo. We first observe that such a vector cannot be
of rank 2.

Proposition 4 (Cariello). Let C; < Vi and Co < V, be proper cones. If z €
C1®maxCo has rank < 2, then z € Ci®minCo.

Proof. If z = 21 ® w2, then for every f € C§ we have f(xz2)xz; € Cq, so elements
C¥ have a constant sign on z5. We may assume that this sign is positive, so that
T9 € C2 and T € Cl.

Assume that z has rank 2 and that z € int(C;®maxCa). Write z = £1Q®z2+y1 ®ya
and let F; = span(z;,y;). The space E; intersects the interior of C;. The 2-
dimensional proper cone C; n E; has two generators s; and t;. Since s; and t;
belong to the boundary of C;, by the Hahn—Banach theorem there exists nonzero
sf and t¥ in CF such that s} (s;) = ¢f(t;) = 0. We have s}(¢;) > 0 and t(s;) > 0
(because s; +¢; € int(C;)) and we may rescale such that s}(¢;) = t¥(s;) = 1. The
map

D, x> sF(x)t; + ] (v)s;
fixes s; and t; and hence is the identity on E;. Hence,
z = (P ®P2)(2)
(T ®s3)(2)th @tz + (s] ®13)(2)t1 ® 52
+(tF®53)(2)s1 ®ta + (tF ®t3)(2)s1 ® 52

showing that z € C;®minCo.
For the general case, fix u; € int(C;) and u} € int(C}). The vector

ze = (Id + efur )(ui]) @ (Id + efug)us])(2)

belongs to int(C;®maxC2) and therefore to C;®minCa by the previous paragraph,
and tends to z and € — 0. [l
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In order to prove the theorem, we need to build inside any non-classical cone
something which looks like entanglement. Here is the key gimmick. To get some
intuition, we understand the simplest non-classical cone.

Consider a 3-dimensional vector space V' spanned by vectors z1, zo, g, To such
that ¢ + 21 = zg + zg. Let C be the cone generated by these vectors. The cone
C is isomorphic to its dual cone, but in a non-canonical way. An isomorphism is
given by the map © : V¥ -V

O(f) = f(zo)z1 + f(z0)(x0 — @) + f(71)7e.
Indeed, the cone CH has 4 extremal elements, corresponding to generators fog, fi@,

foes fie given by fogp(zo) = fog(re) = 0 and fog(z1) = foe(zg) = 1 and so on.
One check that the formula is correct since

O(foe) = z@, O(foe) = w0, O(f1@) = 71, O(fie) = 71 + 20 — g = 20
Proposition 5. The cone C®@maxCy has 24 extreme rays

e 16 extreme rays of rank 1, of the form z; ® x;,
o § extreme rays of rank 3, of the form

21 QT + (X0 — 2g) Tp + T ® T,
where x4, Ty, . are consecutive vertices of the quadrangle {xo, g, 1, 2o}

FEzxercise 5. If xq is extremal in C; and x5 is extremal in Co, then 21 ® x5 is extremal
in C;®minCz and in C;@maxCa.

We first consider the cone P(C, C) of positive maps from C to Cry. This cone
is canonically isomorphic to C®maxCr, and an isomorphism from P(Cq, Co) to
Ci®maxC is given by

b — (I)(LL'()) QRx1 + q’(,@@) ® (:170 — l‘@) + (I)(Z'l) ® zg

The cone P(Cq, Ch) is isomorphic to Cy n H, where H < V* is the subspace
given by quadruples (a,b,c,d) such that a + ¢ = b + d. Let ® be an extreme ray
generator. We show that ® has either rank 1 or corresponds to a symmetry of the
square, of the form

O(20) = Mo, P(zg) = My, P(21) = Aye

(i) rank @ = 3. We claim that ® maps extreme rays to extreme rays. Once the
claim is proved, we obtain that ®(z;) = Aix,(;) for a permutation o € &4 and
Ai > 0. The linearity of ® implies that \; = Ay = A3 = A4, and it is clear that ®
must be of the form given.

To prove the claim, assume by contradiction that ®(z;) is not on an extreme ray
for some ¢; without loss of generality assume ¢ = ©. There exists z not collinear
with ®(zg) such that ®(zg) +dz € C for |§| small enough. Because ® has full rank,
we may write z = ag®(zg) + a1 P(r1) + ag®P(rg), and the vector a is not collinear
to (1,—1,1). For § small enough (positive or negative), the map given by

1~ (1+0a1)®(z1), 72— (1—=0a)®(x2), 3 — (1+5a3)P(w3), T4 +— P(T4)+62

is positive; showing that ® is not extremal — a contradiction.
(ii) rank ® < 2. By Cariello’s theorem, such a ® must be of rank 1 and of the
form given by the Proposition.



3. LECTURE 3
3.1. Square states. Given a proper cone C ¢ V, a family of square states for C
is a quadruple (xo, 21,2, g) of nonzero elements in C such that
(1) Ty + T = T + To,
(2) There exists a quadruple (fy, f1, fo, fo) € (C*)* such that
(@) fo+ fi=fo+ fo
(b) fo(zo) = f1(z1) = fa(ze) = folze) =0,
(c) fi+ f; € int(C*) for any i # j.
In this definition, we may weaken (1) and (2a) to

[x()vxl] N [I'GBax@:l # @a [vafl:I N [f@af@] #* Qv
since we may then replace (z;) and (f;) by suitable multiples to obtain (1) and (2a).

Ezample 3. If C = PSD(C?), a family of square states is given by
zo = [0)0], z1 = [1)X1], 2 = [+)X+], 7o = |-)}{—|
with [+) = Z5(/0) £ [1)).
We are going to prove separately the following two results

Theorem 2 (Theorem A). A proper cone C is nonclassical iff there exists a family
of square states for C.

One direction is easy: a classical cone does not have square-like states. Indeed
assume that zg + x; = zq + 2o with (z;) in a classical cone C. By the decompo-
sition property (which can be proved coordinatewise, reducing in a 1-dimensional
problem), there exist zog), oo, T1@, T1o in C such that

Ty = Togp + Too, T1 = T1p + T10, T = Top + L1, To = Too + T1o

We have fi(zog) < fi(xzo) = 0 and so on, so (f1 + fo)(zog) = 0 and therefore
2o@ = 0. By similar arguments, we come quickly to the fact that zo = 21 = 2g =
T = 0.
Theorem 3 (Theorem B). Let C; and Cq be two classical cones, and (x;) be square
states for Cy and (y;) be square states for Co. The element

Ww=2QYp —TeoQYp + T @Yo + 21 @Y1

belongs to C1®maxCa but not to C1®minCa, and therefore the pair (Cy,Cq) is entan-
gleable.

4. PROOF OF THEOREM A

4.1. Affine diameters. A segment [a,b] of a convex body K — R" is an affine
diameter if there exists a nonconstant linear form g which is maximal on K at a
and minimal on K at b.

Lemma 4 (Hammer, 1963). If n > 1, K < R" is a convex body and any z € K,
there is an affine diameter [a,b] for K such that z € [a,b].

Proof. Take r > 0 maximal such that —rK < K. By maximality, there is a point

a € (—rK) n 0K, and there is a nonzero linear form f which is maximal at a on

both —rK and K. If b = —ra, then [a,b] is an affine diameter containing 0. (]
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4.2. Exposed vs extreme points. A face F' of a convex body K is a convex
subset F' < K such that if + € F can be written as * = Az’ + (1 — A)z” then
z',2" € F. An exposed face is a face of the form K n H where H is a tangent
hyperplane. Not every face is exposed (stadium example), but almost. Say that
x € K is a d-extreme point (resp. d-exposed point) if it belongs to a d-dimensional
face (resp. exposed face). Then

Theorem 5 (Straszewicz (d = 0), Asplund). Any d-extreme point is the limit of a
sequence of d-exposed points.

We now complete the proof and introduce the parameter §(K) as the minimum
dimension d such the convex hull of an extreme point and a d-extreme point in-
tersects int(K). By the Straszewicz—Asplund theorem, we may replace extreme by
exposed in this definition. The key lemma (not proved here) is

Lemma 6. If K is a convex body in R™ which is not a simplex, then §(K) <n—1.

4.3. Proof of Theorem A. Let C be a non-classical cone with K = Cn H as a
base, with H = {h = 1} an affine hyperplane. Set d = 6(K). Up to replacing K by
a projective image, we may assume that there is a linear form f such that

f () = min f < max f

with ¢ € K an exposed point and F' = K n f~!(a1) an exposed face of dimension
d. We denote by W < H the affine subspace generated by zo and F. We have
dimW =d+1 < dim(H). One can check (using maximality in the definition of 4)
W n K = conv(zg, F).

Let p be an affine map on H such that p~1(z) = W, so the rank of p is > 1.
Observe that z € int(p(K)). By Hammer’s lemma, there is a nonconstant affine
map 7y such that minimal on p(K) at yg and maximal at yg, such that z = Ayg +
(1 = Nyg. Write yo = p(zg) and yp = p(xg). The point z = Azg + (1 — N)zg
satisfies p(z) = z hence belongs to K n W and can be written as pzg + (1 — p)a
for some x; € F. This gives square states for C.

If we denote g = v o p, then

9(ze) = ming < g(wo) = g(z1) < maxg = g(ze)-
This gives square states for C: consider the functionals
fo=f—f@o)h, fi =flx)h—f, fo=9-9(ze), fo=29(za)—g

4.4. Proof of Theorem B. To show that w does not belong to Ci®paxCa, we
construct a Bell inequality.
Let’s start with the most famous Bell inequality.

Lemma 7. If |s1| < A1, [t1] < A1, |s2] < A, |ta| < Ag then
[s182 + S1to + t182 — tats| < 247 As.
If moreover (|s1], |t1]|) # (A1, A1) and (|s2], |t2|) # (Aa, As) then
[s182 + S1to + t182 — tats| < 247 As.
Given a1, 1 in Vi* and ao, B2 in V5*, we may define

CHSH(a1, f1,02,02) =1 ®as + o1 @ fa + f1 @az — f1 @ B2 € VIF @ V5.
7



Let (f;) € C¥ and (g;) € C& as in the definition of square-like states. We consider
the linear form

A=2(fo+ f1) ® (g0 + 91) — CHSH(fo — f1, fo — fo,90 — 91, 9@ — 90)
For every 1 € C;\{0} and x5 € C3\{0}, we have

(1) I(fo— f)(z)l < A1, [(fo — fo)(z1)| < As
(2) I(90 — g1)(z2)| < A2, (9@ — g9o)(22)] < A2
for

Ay = (fo+ fi)(@1) = (fo + fe)(z1),
Az = (90 + 91)(22) = (9o + go)(22)-
Moreover, since at most one of the numbers (f;(21)) is zero, at least one inequality in
(1) is strict. The same applies to (2). It follows from Lemma 7 that A(z; ® z2) > 0.
It follows that A(z) > 0 for any nonzero z € Ci®mpminCa.
On the other hand, a very long but not difficult computation shows that

AMw) = 4(fo(ze) — fo(20))(90(We) — 9o (¥0))-
We may assume, up to replacing (0,1,®,0) by (8,0,0,1), that A(w) < 0.



