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OUTLINE

» Generalities on entanglement and local unitary invariants

» Review of standard results on RTNs

» RTNs with reduced randomness: local Haar-averaging

[Work in progress with Luca Lionni + ...]

2/41




Generalities on entanglement and local unitary
Invariants
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SEPARABLE AND ENTANGLED STATES

’H=H1®H2®--'®Hq

Pure states. We say that |¢) € H is
» separable if 3{|v;)} such that

%) =1v1) ®|v2) ® - ®|vg)

» entangled otherwise.

Mixed states. p is
» separable if El{pgk)} and {ajla; >0, >, aj = 1} such that

k K
p=>a@p @l
k
» entangled otherwise.
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LOCAL UNITARY SYMMETRY

]H:m@ﬂz@---@ﬂq\

Local Unitary (LU) transformation. Change of frame in each local
subsystem H;, represented by

ULl - U, with UieU(D;) Vi

Entanglement structure. Orbit under action of
U(D1) @ U(D2)® - ®U(Dy) i.e. equivalence class of states:

» pure states:

W ~ul) & W) =(isle sl

Example. {separable states} constitute one such equivalent class.
» mixed states:
pNLupl & p':(U1®U2®---®Uq)p(U1®U2®---®Uq)_l
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LU INVARIANTS FROM COLORED GRAPHS

From now on, restrict to pure state:

W)= > Tazpea, |21) @ 2) @+ @ |ag)

.27 3q tensor

Represent tensors and tensor contractions by g-colored graphs:
c
Ta1112"'aq = A Zc TabcTcde =
a1 a2 Qg a b d e

Any closed q-colored graph BB represents a LU-invariant polynomial,
which we denote Trp(T, T).

3

1 ,
@ A TabcTabc 2 . 2 & TabcTad(‘,TedfTebf
2 '

3

Claim. {Trs(T,T)|B connected} generates the ring of polynomial
LU-invariants. Any two B; # B, produce independent invariants in the
limit of large dimension (D1, ..., Dg — +00). [R. Gurau's talk]
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ENTANGLEMENT SPECTRUM OF A BIPARTITE SYSTEM

[¥) = Z El/aj 1) ® |a2)

ai,az .
rectangular matrix

3 a single connected invariant of order 2n, represented by cyclic graph G,:
Gy Gy Gs

Tre, (7. T) = t(TT1)") = te(ef) = > pf

Entanglement structure of T characterized by its entanglement spectrum:
{LU invariants of [¢)} & {tr ((TTT)n)}ISnSmin(Dl,DQ)

& Spec(TTH) = {pi}1<i<min(D1,Ds)

& {singular values of T} = {\/pi}1<i<min(D:,D,)

Remark. Singular value decomposition = "Schmidt decomposition" :

) = PP Gle) @ If)
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ENTANGLEMENT ENTROPIES

Functions of the entanglement spectrum which have special properties
(e.g. monotonicity under quantum operations) [P. Vrana's talk]

Entanglement entropy. Von Neumann entropy of p1 (or p2)

min(Dl,Dz)

S(p1) = —tr(p1In(p1)) = — Z piIn(p;)

i=1
Rényi-n quantum entropy. Rényi-n entropy p; (or p»)

1 min(Dl,Dg)

n(tr(p") =M | > pf

n -
i=1

1
Sn(pl) = 1

—-n
Example. Maximally entangled state / "Bell state"

1 &
|¢>=ﬁ§|1>®|l> =  Sy(l$))=InD

— flat entanglement spectrum.
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MULTIPARTITE ENTANGLEMENT AND TENSOR INVARIANTS

lp) = Z Torayay |21) ® [22) ® -+ ® |ag) qg>3

A3 ensor

Za \@

(x3) (x3)

#{connected invariants of order 2n} =1, 3, 7, 26, 97, 624, 4163...
Super-exponential growth of the number of independent invariants!

[Ben Geloun, Ramgoolam '13]

Question

Which of those many invariants are most relevant to characterize the
multipartite entanglement structure of a many-body system?
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TENSOR INVARIANTS AS PERMUTATIONS

Invariants can be conveniently parametrized by g-uplet of permutations
(T1,7'2 ..... ’Tq) € 5;'<q [Ben Geloun, Ramgoolam "13]

{q — colored graph of order 2n} —y Si\S;/Sn

S

(n=2,9=23)
S—
7 = (id, id, id) = ((12),id,id)
With this convention in mind, we will write:
Tra(T, T)=Trz(T, T)
Remark. (g = 2) tr(p1") = Trg, (T, T) = Tria, c,)(T T), 0:=(12---n).
”Replica trick"
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Review of some standard results on RTNs

1. Page curve
2. Area laws

3. RTNs with holographic area laws
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RANDOM BIPARTITE STATE: DEFINITION

) =D Myl ®lj) € Hi @ Ha
ij
Two equivalent ways of defining a uniform random state:

1. |¢) = U|0) with U random Haar-distributed on U(D1D,)

2. M;; Gaussian random matrix with covariance

(Mi;My)) = 0ikdji

D, D,

so that (tr(MMT)) = 1.

For simplicity, let us adopt the second option, assuming | D1D, > 1| (no

further normalization required in this regime).

Goal: compute (tr(p1")) = (Tr(ia,0)(T, T)), and deduce typical
entanglement spectrum / entanglement entropies.
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RANDOM BIPARTITE STATE: D; < D, REGIME

Recall Wick's formula:

(Mijy My, Miyj, Mig, - - - Mi,j, Mi1,) D1D2 ZH% iole
TES, p=1

To simplify our life even more, let us first assume D; < D,.

et = oty = (=] [+ [

1
=—— (D1Dy* + D{?’D5) ~ —
(D1D2)2( 102" + Dy 2) D;

More generally, there is a single dominant Wick contraction for G,:

1 _
(tr(p1")) = leDzn =D,'™"
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RANDOM BIPARTITE STATE: D; < D, REGIME

Here, one can prove that

In(tr(p1")) &~ (Intr(p1"))

so that

(Su(p) ~ 1

—n

In (D:'~") ~ In(Dy)

Taking the limit n — 1 (can be justified...), we deduce

| (S(p1)) = In(Dy)]

Volume law

Is this behaviour more generally valid for D; < D,7?
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RANDOM BIPARTITE STATE: D; < D, REGIME

n C'T C 7 loo
(tr(p1 )> <TI’(,d g)(T T D1D2 Z Dy (7) ( )

where

» C(T) = # cycles in the cycle-decomposition of T;

» o =(12---n).
In the regime D;D, — +00 with %; fixed, the leading contributions
maximize C(7) + C(t7 1 o o).

Claim. This happens when

C(r)+C(t7toa)=n+1

Proof. C(7) + C(77* 0 &) counts the number of faces of a combinatorial map
(discrete surface) with n edges and 1 vertex. We must therefore have

C(t)+C(t ' oo)=n+1-2g

where g > 0 is the genus of the surfaces. a
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RANDOM BIPARTITE STATE: D; < D, REGIME

Def. A non-crossing permutation is a T € S, obeying:

C(r)+C(t7toa)=n+1

& |d(id, 1)+ d(r,0) = d(id, ) |

where d(71, ) == n— C(m 07, ') is the Cayley distance on S,. One
also says that 7 is on a geodesic between id and o.

With these definitions, one finds
C(t)-1
_ D1 _ Dl
tr(o")) ~ D" E =1 — D" F(1—pn —po2 2L
<I’(P1 )> 1 ey <D2> 1 2 1( n,—n, ,Dz)

After analytic continuation of n, we can compute lim,_,1 2 In(tr(p1")),
yielding

D
(S(p1)) = In(D1) — ==
—— 2D2
volume law . ~~
finite correc.
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RANDOM BIPARTITE STATE: PAGE CURVE

Set D2 = D1D2.

(S(p1)

~In(D) — %

In(D) 21n(D) In(Dy)

[Page '93; Foong, Kano '94; Sanchez-Ruiz '95; Sen '96]
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Review of some standard results on RTNs

1. Page curve
2. Area laws

3. RTNs with holographic area laws
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CONDENSED MATTER [TaLks BY N. ScHucH anp M. C. BafiuLs]
For a random |¢) € Ha @ Hj:

(S(pa)) ~ In(d2) ~ Va

However, the ground state of a gapped
local Hamiltonian typically obeys an
area law

b N

5(pa) < K|0A|

— Tensor Networks (TN): variational Ansitze with a polynomial

number of parameters in system size, which obey area laws by design.
N 3 Il

Matrix Product State

q

)= D (MM M*)[a1) ® - ® [ag)
aj,ax-ag
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RELATIVISTIC QFT

Unruh effect / Bisognano-Wichman theorem (and, similarly, BH entropy)

with Hy = boost Hamiltonian.

Universal divergence

S(pa) o K|OA|

Suggested (heuristic) entropic derivation of general relativity [Jacobson '95,
'15]

85(pa) = 1 l0A

universal

<~ Gab+Agab = 87TGTab
"entanglement equilibrium hypothesis”
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HOLOGRAPHY

Holographic area law (AdS/CFT):

CFTy
A
Ryu-Takayanagi formula

0A

Holographic version of Jacobson's argument:
Ryu-Takayanagi for any ball A = Einstein’s equations up to 2nd order

[Faulkner et al. 2017]
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Review of some standard results on RTNs

1. Page curve
2. Area laws

3. RTNs with holographic area laws
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DEFINITION [M. WALTER'S TALK]
Graph G = (V, E) with V = Vo U Vs = {.} L {O}

Associate Hilbert space H. x to each
half-edge (e, x), with

(bond dimension)

Edge data. Maximally mixed bipartite state along each edge

D
1 . .
$) = ® ﬁ2|l>x®|/>y
(x.y)€E i=1
Vertex data.
m=Q M« Imxe Q Hex
XEWhulk e incident to x
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DEFINITION

Tensor Network state:

[19) = (1dv, ® (1)) [4) | € Q) He,.

\\ “
/ : xXr _
/

/
AN

Random Tensor Network state. Take {|n)x} to be independent,
Haar-distributed (or Gaussian) random vectors. We then have the Wick

formula
E (Imxx(nl®") o > Rl

€S,

where R, (o) is a permutation operator acting on HE"
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EXPECTATION VALUES OF LU INVARIANTS

YRS

( Partition function of generalized spin model \

Z(Tl,‘l'2 ----- Tq) — Z exp(—ﬁg(a))

o:V—S,
VYvEAK ,0(v)=Tk

Elo)= Y d(o(x).aly)) B=In(D)
\ (x,y)EE /
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ENTROPY ~ GROUND STATE ENERGY

The D — 400 limit is a zero-temperature limit. At leading-order, we
thus have:

Z('rl,‘rz ..... Tq) — -/\/’g.s.Di‘gmin (]- + O(l/D))

Example. Zq4,(12)) = (tr(p%)) is a Ising partition function.

Let ya be a min-cut, that is: a
minimal collection of edges that
disconnect A from A when cut.

gmin = "YA‘
(tr(p2)) ~ Ng.s. D~

Holographic area law for Rényi-2
entropy:

[ (S2(p)) = |1l In(D) |
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BIPARTITE SETTING: GENERAL RESULTS

Min-cut / Max-flow theorem. (simplified version)
There exists |ya| edge-disjoint paths connecting A to A.

Proof. Explicit algorithm: Ford-Fulkerson (50's).

Theorem. We have Z(iq -y ~ N5 D444l In particular, taking
7 =(12---n) leads to

[ (Sn(pa)) ~ [1a/In(D)]

[Collins, Nechita, Zyczkowski '13 ; Hayden et al '16; ...]
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BIPARTITE SETTING: GENERAL RESULTS

Proof. Repeated application of the triangular inequality along each flow.

Let P =Py U---U P}, the edges of a max-flow.

[val

€)= Y do(x).o() =D >
(xy)eE i=1 (x,y)EP;
[val
> Zd = |yald(id, )

And those inequalities are saturated. O
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MULTIPARTITE SETTING: TWO EXAMPLES

(123), (132))

Definition. (711, T2, 73) is compatible if 3 o such that:
» d(11,0)+ d(o, 1) =d(11, T2);
» d(7y,0)+ d(o, 3) = d(11,73);
» d(72,0)+ d(o,13) = d(12,73).

Claim.
» (id, (123),(132)) is compatible;
> ((12)(34),(13)(24), (14)(23)) is not compatible.
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MULTIPARTITE SETTING: TWO EXAMPLES

(id, (123), (132))

Theorem. For 7 = (id, (123), (132))

lgmin = |’YA1‘ + |’YA2| + ‘rYA3|

Proof. Generalization of previous argument relying on multi-cut /
max-flow theorem... O
[Cui, Hayden, et al '18 ; Dong, Qi, Walter '21; Kudler-Flam, Ryu, Narovlansky '21]

— Entanglement measure which, at leading order, does not capture
information that was not already contained in bipartite measures.
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MULTIPARTITE SETTING: TWO EXAMPLES

((12)(34), (13)(24), (14)(23))

Theorem. For 7 = ((12)(34), (13)(24), (14)(23))

Emin=4 min |y|

tripartition =y

[Penington, Walter, Witteveen '22]

— Entanglement measure capturing genuinely tripartite information.

Can we explore the space of multipartite entanglement measures more
systematically? at least for simple networks?

[w.i.p with Johann Chevrier, Luca Lionni, Michael Walter]
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RTNs with reduced randomness: local
Haar-averaging
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BASIC IDEA

Keep local entanglement structure at each vertex of the network fixed i.e.
average over local unitaries instead of full unitary group.

AN
: T : ?{z = 7{1ﬂ€1 X 7{Q352 ® ?{1,63
S

Questions:
» Can such reduced randomness support area laws?
» If so, can we identify specific entanglement structures which do so?

» Can this framework produce richer entanglement spectra than in the
standard case (non-flat spectra)?
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LOCAL HAAR-AVERAGING

Suppose x is a g-valent vertex, g > 3.

IT)x = Z Ty |21) ® |22) ® - ®ag)

ai,az--+dq
fixed tensor

Average over U(D)®9 ¢ U(Dq):

|[W)« ~ uniform random state in LU-orbit of |T),, that is:
®n

q q t
E [[W)un(W[*7] = /U e Y [(@ U<f>> [T)x(T] <® U‘C>> ]

c=1 c=1
seed state
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EXPLICIT EVALUATION OF MOMENTS

Weingarten calculus allows to write: [Collins et al. "00s]
E |:|W>XX<\U|XH:| {iSvjs}gzl - Z ‘FT(O-), I‘{’is-js}gzl

4 .
state-dep. weight tensor structure
~ colored diagram

where 0 = (01,...,04) € 5,7 etc. and
s Js} H H 6lC ac
c=1s=1
Fr(o) = ZTr.,.(T', T) WP(or?)
—_——— ———
LU invariant Weingarten
functions

Instead of one permutation per vertex, we have two multiplets o and T.

However, the Weingarten functions encourages & and T to be "close to
each other".
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ASYMPTOTICS OF THE WEINGARTEN FUNCTION

Cayley distance

DWW (ort)y =D~ 40T)  M@rY) (1+0(1/D?)
———
Moebius function
(no definite sign)

For some entangled seed states, this allows to write:

_ Z p—<(Br)=3, d(oc,c) <H M(ooTe ) (14+0(1/D?)

where

» k(B;) = n— #{connected components of B, } is minimal when
T1I=T2 = ... =Tq,
» > 7  d(oc,7c) is minimal when o = T;

» wr(T) is a state-dependent contribution.
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wr(T) FOR SOME EXAMPLES OF SEED STATES

1. GHZ state:
1 2 .- q
L | 0/ b oa
N T) =D D2 " Q) )e = |wr(r)=0
i=1 c=1
2. "Cyclic" state:
1 2 g
i
[T)x =DV |~ = |wr(r)= 8J(Br)
——
genus of "jacket" J=(12:--q)
3. "Complete graph" state:
1 2 g
1 o
‘T>X [ T~ = ‘wT(T) = wGurau(B‘r)‘

[R. Gurau'’s talk]
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EXAMPLE |I: GHZ WITH n=2 AND g =4

S, = {®, 6}. One can expicitly sum over T, and derive a generalized
spin model governed by energy:

g({av}) = glsing({av}) + 2u1+ v

vertex defects

where v := #{defects of types}.

Claim. Energy minimizers are not Ising configurations in general; as a
result: we have ca < |ya| (with ca < |ya| for some networks) such that

Eltr(03)] = Ngs. exp (—In(D)ca) (1 + O(1/D)) . |E[Sa(pa)] ~ caln(D) |
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EXAMPLE |l: COMPLETE GRAPH SEED STATE
A "spin" configuration is labelled by

s={oV op, 7,70 [ (v,w) € E}

Leading order contributions minimize the Ising energy Erging(s) of a
refined network

Conjecture. The Rényi entropy of a subregion A is governed by the size
of a minimal-cut |yal

Eftr(p3)] = Ngs xp (~ In(D)lyal) (1 + O(1/D)) . [E[Sa(pa)] ~ [1a]In(D)]

To be checked: absence of cancellation in the leading-order sector (which

could arise due to non-positivity of Moebius function). Treacherous...
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CONCLUSION

» RTNs with reduced randomness, allowing for tunable entanglement
structure at each vertex.

» Rényi entropy evaluation maps to generalized spin models:
permutation associated to half-edges rather than edges, and energy
contribution from internal structure of vertices.

» First examples with homogeneous choice across the network suggest
that distinct choices of local entanglement structures affect the
entanglement spectrum of the global state.

» In principle, the local entanglement structure could be chosen
non-homogeneously across the network — large variety of effective
behaviour can be expected, but likely hard to investigate in detail.

» How is the multipartite entanglement structure of the global state
affected?

[Carrozza, Lionni + ... w.i.p.]
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