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Generalities on entanglement and local unitary
invariants
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Separable and entangled states

H = H1 ⊗H2 ⊗ · · · ⊗ Hq

Pure states. We say that | 〉 ∈ H is
I separable if ∃{|vi 〉} such that

| 〉 = |v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vq〉

I entangled otherwise.

Mixed states.  is
I separable if ∃{(k)

i } and {¸i |¸i ≥ 0;
∑

i ¸i = 1} such that

 =
∑
k

¸k
(k)
1 ⊗ 

(k)
2 ⊗ · · · ⊗ (k)

q

I entangled otherwise.
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Local unitary symmetry

H = H1 ⊗H2 ⊗ · · · ⊗ Hq

Local Unitary (LU) transformation. Change of frame in each local
subsystem Hi , represented by

U1 ⊗ U2 ⊗ · · · ⊗ Uq with Ui ∈ U(Di ) ∀i

Entanglement structure. Orbit under action of
U(D1)⊗ U(D2)⊗ · · · ⊗ U(Dq) i.e. equivalence class of states:

I pure states:

| 〉 ∼LU | ′〉 ⇔ | ′〉 = (U1 ⊗ U2 ⊗ · · · ⊗ Uq) | 〉

Example. {separable states} constitute one such equivalent class.

I mixed states:

 ∼LU 
′ ⇔ ′ = (U1 ⊗ U2 ⊗ · · · ⊗ Uq)  (U1 ⊗ U2 ⊗ · · · ⊗ Uq)−1
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LU invariants from colored graphs
From now on, restrict to pure state:

| 〉 =
∑

a1;a2···aq

Ta1a2···aq︸ ︷︷ ︸
tensor

|a1〉 ⊗ |a2〉 ⊗ · · · ⊗ |aq〉

Represent tensors and tensor contractions by q-colored graphs:

· · ·
a1 a2 aq

Ta1a2···aq =
∑

c TabcTcde =

ba ed

c

�



�
	Any closed q-colored graph B represents a LU-invariant polynomial,

which we denote TrB(T̄ ; T ).

1

2

3
1

1

2 2

3

3

↔ TabcTabc ↔ TabcTadcTedfTebf

Claim. {TrB(T̄ ; T ) | B connected} generates the ring of polynomial
LU-invariants. Any two B1 6= B2 produce independent invariants in the
limit of large dimension (D1; : : : ; Dq → +∞). [R. Gurau’s talk]
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Entanglement spectrum of a bipartite system

| 〉 =
∑
a1;a2

Ta1a2︸︷︷︸
rectangular matrix

|a1〉 ⊗ |a2〉

∃ a single connected invariant of order 2n, represented by cyclic graph Gn:

G1 G2 G3

· · ·

TrGn(T̄ ; T ) = tr((TT †)n) = tr(n1) =
∑
i

pni

Entanglement structure of T characterized by its entanglement spectrum:

{LU invariants of | 〉} ⇔ {tr
(
(TT †)n

)
}1≤n≤min(D1;D2)

⇔ Spec(TT†) = {pi}1≤i≤min(D1;D2)

⇔ {singular values of T} = {√pi}1≤i≤min(D1;D2)

Remark. Singular value decomposition ⇒ "Schmidt decomposition" :
| 〉 =

∑min(D1;D2)
i=1

√
pi |ei 〉 ⊗ |fi 〉
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Entanglement entropies
Functions of the entanglement spectrum which have special properties
(e.g. monotonicity under quantum operations) [P. Vrana’s talk]

Entanglement entropy. Von Neumann entropy of 1 (or 2)

S(1) = −tr(1 ln(1)) = −
min(D1;D2)∑

i=1

pi ln(pi )

Rényi-n quantum entropy. Rényi-n entropy 1 (or 2)

Sn(1) =
1

1− n ln (tr(1
n)) =

1

1− n ln

min(D1;D2)∑
i=1

pni


Example. Maximally entangled state / "Bell state"

| 〉 =
1√
D

D∑
i=1

|i〉 ⊗ |i〉 ⇒ Sn(| 〉) = lnD

→ flat entanglement spectrum.
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Multipartite entanglement and tensor invariants

| 〉 =
∑

a1;a2···aq

Ta1a2···aq︸ ︷︷ ︸
tensor

|a1〉 ⊗ |a2〉 ⊗ · · · ⊗ |aq〉 ; q ≥ 3

(×3) (×3) (×3)

· · ·

#{connected invariants of order 2n} = 1 ; 3 ; 7 ; 26 ; 97 ; 624 ; 4163 : : :

Super-exponential growth of the number of independent invariants!

[Ben Geloun, Ramgoolam ’13]

Question

Which of those many invariants are most relevant to characterize the
multipartite entanglement structure of a many-body system?
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Tensor invariants as permutations
Invariants can be conveniently parametrized by q-uplet of permutations
(fi1; fi2; : : : ; fiq) ∈ S×qn [Ben Geloun, Ramgoolam ’13]

{q − colored graph of order 2n} ←→
1−1

Sn\S×qn =Sn

~τ = ((12), id, id)~τ = (id, id, id)

1 1

22

1 1

22

(n = 2 , q = 3)

With this convention in mind, we will write:

TrB(T̄ ; T ) = Tr~fi (T̄ ; T )

Remark. (q = 2) tr(1
n) = TrGn(T̄ ; T ) = Tr(id;ff)(T̄ ; T ), ff := (12 · · · n).

"Replica trick"
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Review of some standard results on RTNs

1. Page curve
2. Area laws
3. RTNs with holographic area laws
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Random bipartite state: definition

| 〉 =
∑
i ;j

Mi j |i〉 ⊗ |j〉 ∈ H1 ⊗H2

Two equivalent ways of defining a uniform random state:

1. | 〉 = U|0〉 with U random Haar-distributed on U(D1D2)

2. Mi j Gaussian random matrix with covariance

〈Mi jM̄kl〉 =
1

D1D2
‹ik‹j l

so that 〈tr(MM†)〉 = 1.

For simplicity, let us adopt the second option, assuming D1D2 � 1 (no
further normalization required in this regime).

Goal: compute 〈tr(1
n)〉 = 〈Tr(id;ff)(T̄ ; T )〉, and deduce typical

entanglement spectrum / entanglement entropies.

13/41



Random bipartite state: D1 � D2 regime
Recall Wick’s formula:

〈Mi1j1M̄k1l1Mi2j2M̄k2l2 · · ·MinjnM̄knln〉 =
1

(D1D2)n

∑
fi∈Sn

n∏
p=1

‹ipkfi(p)
‹jp lfi(p)

To simplify our life even more, let us first assume D1 � D2.

〈tr(1
2)〉 = 〈Tr (M̄;M)〉 = 〈 〉 = +

=
1

(D1D2)2

(
D1D2

2 +D1
2D2

)
≈ 1

D1

More generally, there is a single dominant Wick contraction for Gn:

〈tr(1
n)〉 ≈ 1

(D1D2)n
D1D2

n = D1
1−n

14/41



Random bipartite state: D1 � D2 regime

Here, one can prove that

ln〈tr(1
n)〉 ≈ 〈ln tr(1

n)〉

so that
〈Sn(1)〉 ≈ 1

1− n ln
(
D1

1−n) ≈ ln(D1)

Taking the limit n→ 1 (can be justified...), we deduce

〈S(1)〉 ≈ ln(D1)

Volume law

Is this behaviour more generally valid for D1 ≤ D2?
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Random bipartite state: D1 ≤ D2 regime

〈tr(1
n)〉 = 〈Tr(id;ff)(T̄ ; T )〉 ≈ 1

(D1D2)n

∑
fi∈Sn

D1
C(fi)D2

C(fi−1◦ff)

where
I C(fi) = # cycles in the cycle-decomposition of fi ;
I ff = (12 · · · n).

In the regime D1D2 → +∞ with D1

D2
fixed, the leading contributions

maximize C(fi) + C(fi−1 ◦ ff).

Claim. This happens when

C(fi) + C(fi−1 ◦ ff) = n + 1

Proof. C(fi) + C(fi−1 ◦ ff) counts the number of faces of a combinatorial map
(discrete surface) with n edges and 1 vertex. We must therefore have

C(fi) + C(fi−1 ◦ ff) = n + 1− 2g

where g ≥ 0 is the genus of the surfaces. ˜
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Random bipartite state: D1 ≤ D2 regime
Def. A non-crossing permutation is a fi ∈ Sn obeying:

C(fi) + C(fi−1 ◦ ff) = n + 1

⇔ d(id; fi) + d(fi; ff) = d(id; ff)

where d(fi1; fi2) := n − C(fi1 ◦ fi−1
2 ) is the Cayley distance on Sn. One

also says that fi is on a geodesic between id and ff.

With these definitions, one finds

〈tr(1
n)〉 ≈ D1

1−n
∑

fi∈Sn n:c:

(
D1

D2

)C(fi)−1

= D1
1−n

2F1(1− n;−n; 2;
D1

D2
)

After analytic continuation of n, we can compute limn→1
1

1−n ln〈tr(1
n)〉,

yielding

〈S(1)〉 ≈ ln(D1)︸ ︷︷ ︸
volume law

− D1

2D2︸︷︷︸
finite correc:
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Random bipartite state: Page curve

Set D2 := D1D2.

ln(D1)

〈S(ρ1)〉

2 ln(D)ln(D)

≈ ln(D)− 1
2

[Page ’93; Foong, Kano ’94; Sánchez-Ruiz ’95; Sen ’96]
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Review of some standard results on RTNs

1. Page curve
2. Area laws
3. RTNs with holographic area laws

19/41



Condensed matter [Talks by N. Schuch and M. C. Bañuls]

A

Ā

For a random | 〉 ∈ HA ⊗HĀ:

〈S(A)〉 ∼ ln(dVAloc) ∼ VA

However, the ground state of a gapped
local Hamiltonian typically obeys an
area law

S(A) ≤ K|@A|

−→ Tensor Networks (TN): variational Ansätze with a polynomial
number of parameters in system size, which obey area laws by design.

1
2 3 4 · · ·

q

Matrix Product State

| 〉 =
∑

a1;a2···aq

tr(Ma1Ma2 · · ·Maq )|a1〉 ⊗ · · · ⊗ |aq〉
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Relativistic QFT

Unruh effect / Bisognano-Wichman theorem (and, similarly, BH entropy)

AĀ ∂A
Σ

”A =
e−2ıHA

Z
”

with HA = boost Hamiltonian.

Universal divergence

S(A) ∝ K|@A|

Suggested (heuristic) entropic derivation of general relativity [Jacobson ’95,
’15]


‹S(A) = ”︸︷︷︸

universal

‹|@A|

”entanglement equilibrium hypothesis”

⇐⇒ Gab+Λgab = 8ıGTab
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Holography

Holographic area law (AdS/CFT):

CFTd

A

γA

AdSd+1

Ā

Ryu-Takayanagi formula

S(A) =
|@A|
4G

Holographic version of Jacobson’s argument:

Ryu-Takayanagi for any ball A ⇒ Einstein’s equations up to 2nd order

[Faulkner et al. 2017]
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Review of some standard results on RTNs

1. Page curve
2. Area laws
3. RTNs with holographic area laws
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Definition [M. Walter’s talk]

Graph G = (V; E) with V = Vbulk t V@ = {•} t {◦}

x

e

Associate Hilbert space He;x to each
half-edge (e; x), with

dimHe;x = D (bond dimension)

Edge data. Maximally mixed bipartite state along each edge

|ffi〉 =
⊗

(x;y)∈E

1√
D

D∑
i=1

|i〉x ⊗ |i〉y

Vertex data.

|”〉 =
⊗
x∈Vbulk

|”〉x ; |”〉x ∈
⊗

e incident to x

He;x
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Definition

Tensor Network state:

| 〉 = (IdV@ ⊗ 〈”|) |ffi〉 ∈
⊗
v∈V@

Hev ;v

e

x y

Random Tensor Network state. Take {|”〉x} to be independent,
Haar-distributed (or Gaussian) random vectors. We then have the Wick
formula

E
(
|”〉x x〈”|⊗n

)
∝
∑
ff∈Sn

Rx(ff)

where Rx(ff) is a permutation operator acting on H⊗nx
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Expectation values of LU invariants

A3

A1

A2

τ1

τ2

τ3

σx σy

Define

Z(fi1;fi2;:::;fiq) := 〈Tr(fi1;fi2;:::;fiq)(T̄ ; T )〉

'

&

$

%

Partition function of generalized spin model

Z(fi1;fi2;:::;fiq) =
∑

ff:V→Sn
∀v∈Ak ;ff(v)=fik

exp (−˛E(ff))

E(ff) =
∑

(x;y)∈E

d(ff(x); ff(y)) ˛ = ln(D)
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Entropy ∼ ground state energy
The D → +∞ limit is a zero-temperature limit. At leading-order, we
thus have:

Z(fi1;fi2;:::;fiq) = Ng:s:D−Emin (1 +O(1=D))

Example. Z(id;(12)) = 〈tr(2
A)〉 is a Ising partition function.

A id = +

Ā

(12) = −

γA

id id

id id id

(12)

(12)

(12)

(12)

(12)

(12)

Let ‚A be a min-cut, that is: a
minimal collection of edges that
disconnect A from Ā when cut.

Emin = |‚A|

〈tr(2
A)〉 ≈ Ng:s:D−|‚A|

Holographic area law for Rényi-2
entropy:

〈S2(A)〉 ≈ |‚A| ln(D)
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Bipartite setting: general results
Min-cut / Max-flow theorem. (simplified version)
There exists |‚A| edge-disjoint paths connecting A to Ā.

A id

γA

τ

Ā

Proof. Explicit algorithm: Ford-Fulkerson (50’s).

Theorem. We have Z(id;fi) ≈ Ng:s:D−d(id;fi)|‚A|. In particular, taking
fi = (12 · · · n) leads to

〈Sn(A)〉 ≈ |‚A| ln(D)

[Collins, Nechita, Zyczkowski ’13 ; Hayden et al ’16; ...]
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Bipartite setting: general results
Proof. Repeated application of the triangular inequality along each flow.

A id

γA

τ

Ā

s1

s2

s3
s4

t1

t2

t3

t4

Let P = P1 t · · · t P|‚A| the edges of a max-flow.

E(ff) =
∑

(x;y)∈E

d(ff(x); ff(y)) ≥
|‚A|∑
i=1

∑
(x;y)∈Pi

d(ff(x); ff(y))

≥
|‚A|∑
i=1

d(ff(si ); ff(ti )) = |‚A|d(id; fi)

And those inequalities are saturated. ˜
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Multipartite setting: two examples

A3

A1

A2

τ1

τ2

τ3

σx σy

(id, (123), (132)) ((12)(34), (13)(24), (14)(23))

Definition. (fi1; fi2; fi3) is compatible if ∃ ff such that:
I d(fi1; ff) + d(ff; fi2) = d(fi1; fi2);
I d(fi1; ff) + d(ff; fi3) = d(fi1; fi3);
I d(fi2; ff) + d(ff; fi3) = d(fi2; fi3).

Claim.
I (id; (123); (132)) is compatible;
I ((12)(34); (13)(24); (14)(23)) is not compatible.
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Multipartite setting: two examples

A3

A1

A2

τ1

τ2

τ3

σx σy

(id, (123), (132))

Theorem. For ~fi = (id; (123); (132))

Emin = |‚A1 |+ |‚A2 |+ |‚A3 |

Proof. Generalization of previous argument relying on multi-cut /
max-flow theorem... ˜

[Cui, Hayden, et al ’18 ; Dong, Qi, Walter ’21; Kudler-Flam, Ryu, Narovlansky ’21]

→ Entanglement measure which, at leading order, does not capture
information that was not already contained in bipartite measures.

31/41



Multipartite setting: two examples

A3

A1

A2

τ1

τ2

τ3

σx σy

((12)(34), (13)(24), (14)(23))

Theorem. For ~fi = ((12)(34); (13)(24); (14)(23))

Emin = 4 min
tripartition ‚

|‚|

[Penington, Walter, Witteveen ’22]

→ Entanglement measure capturing genuinely tripartite information.

Can we explore the space of multipartite entanglement measures more
systematically? at least for simple networks?

[w.i.p with Johann Chevrier, Luca Lionni, Michael Walter]
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RTNs with reduced randomness: local
Haar-averaging
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Basic idea

Keep local entanglement structure at each vertex of the network fixed i.e.
average over local unitaries instead of full unitary group.

e1

x

e2

e3

Hx = Hx,e1 ⊗Hx,e2 ⊗Hx,e3

Questions:
I Can such reduced randomness support area laws?
I If so, can we identify specific entanglement structures which do so?
I Can this framework produce richer entanglement spectra than in the

standard case (non-flat spectra)?
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Local Haar-averaging

Suppose x is a q-valent vertex, q ≥ 3.

|T 〉x =
∑

a1;a2···aq

Ta1a2···aq︸ ︷︷ ︸
fixed tensor

|a1〉 ⊗ |a2〉 ⊗ · · · ⊗ |aq〉

Average over U(D)⊗q  U(Dq):

|Ψ〉x ∼ uniform random state in LU-orbit of |T 〉x , that is:

E
[
|Ψ〉x x〈Ψ|⊗n

]
:=

∫
U(D)⊗q

dU

( q⊗
c=1

U(c)

)
|T 〉x x〈T |︸ ︷︷ ︸
seed state

(
q⊗
c=1

U(c)

)†⊗n
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Explicit evaluation of moments
Weingarten calculus allows to write: [Collins et al. ’00s]

E
[
|Ψ〉x x〈Ψ|⊗n

]
{is ;js}ns=1

=
∑
ffffff

FT (ffffff)︸ ︷︷ ︸
state-dep. weight

Iffffff{is ;js}ns=1︸ ︷︷ ︸
tensor structure
∼ colored diagram

where ffffff = (ff1; : : : ; ffq) ∈ Sn×q etc. and

Iffffff{is ;js}ns=1
=

q∏
c=1

n∏
s=1

‹ics ;jcffc (s)

FT (ffffff) =
∑
fififi

Trfififi (T̄ ; T )︸ ︷︷ ︸
LU invariant

WDDD(fffffffififi -1)︸ ︷︷ ︸
Weingarten
functions

Instead of one permutation per vertex, we have two multiplets ffffff and fififi .

However, the Weingarten functions encourages ffffff and fififi to be "close to
each other".
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Asymptotics of the Weingarten function

DnW (D)(fffi -1) = D−

Cayley distance︷ ︸︸ ︷
d(ff; fi) M(fffi -1)︸ ︷︷ ︸

Moebius function
(no definite sign)

(
1 +O(1=D2)

)

For some entangled seed states, this allows to write:

FT (ffffff) =
∑
fififi1

D−»(Bfi )−
∑q
c=1 d(ffc ;fic )−!T (fififi)

(
q∏
c=1

M(ffcfic
-1)

)(
1 +O(1=D2)

)
where
I »(Bfi ) = n −#{connected components ofBfififi} is minimal when
fi1 = fi2 = : : : = fiq;

I
∑q

c=1 d(ffc ; fic) is minimal when ffffff = fififi ;
I !T (fififi) is a state-dependent contribution.
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!T (fififi) for some examples of seed states
1. GHZ state:

1 2 · · · q

· · · |T 〉x = D(q−1)=2
D∑
i=1

q⊗
c=1

|i〉c ⇒ !T (fififi) = 0

2. "Cyclic" state:

|T 〉x = Dq=4

1 2 · · · q

⇒ !T (fififi) = gJ(Bfififi )︸ ︷︷ ︸
genus of "jacket" J=(12···q)

3. "Complete graph" state:

|T 〉x ∝

1 2 · · · q

⇒ !T (fififi) = !Gurau(Bfififi )

[R. Gurau’s talk]
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Example I: GHZ with n = 2 and q = 4

S2 = {⊕;	}. One can expicitly sum over fififi , and derive a generalized
spin model governed by energy:

E({ffffffv}) = EIsing({ffffffv}) + 2�1 + �2︸ ︷︷ ︸
vertex defects

where �s := #{defects of type s}.

⊕
⊕ 	

⊕

s = 1

⊕
	

s = 2

	 ⊕

⊕
⊕

⊕
⊕

⊕ ⊕ 	

	

γA

⊕
⊕

⊕
	

⊕ 	 	

	

γ′
A

Claim. Energy minimizers are not Ising configurations in general; as a
result: we have cA ≤ |‚A| (with cA < |‚A| for some networks) such that

E[tr(2
A)] = Ng:s: exp (− ln(D)cA) (1 +O(1=D)) ; E[S2(A)] ≈ cA ln(D)
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Example II: complete graph seed state
A "spin" configuration is labelled by

s = {ffwv ; ffvw ; fiwv ; fivw | (v; w) ∈ E}

Leading order contributions minimize the Ising energy EIsing(s) of a
refined network

σw
v

σv
w

τwv
τxv

τ yv

τ zv

weight 1

weight 1
q−1 = 1

3

Conjecture. The Rényi entropy of a subregion A is governed by the size
of a minimal-cut |‚A|

E[tr(2
A)] = Ng:s: exp (− ln(D)|‚A|) (1 +O(1=D)) ; E[S2(A)] ≈ |‚A| ln(D)

To be checked: absence of cancellation in the leading-order sector (which
could arise due to non-positivity of Moebius function). Treacherous...
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Conclusion
I RTNs with reduced randomness, allowing for tunable entanglement

structure at each vertex.

I Rényi entropy evaluation maps to generalized spin models:
permutation associated to half-edges rather than edges, and energy
contribution from internal structure of vertices.

I First examples with homogeneous choice across the network suggest
that distinct choices of local entanglement structures affect the
entanglement spectrum of the global state.

I In principle, the local entanglement structure could be chosen
non-homogeneously across the network → large variety of effective
behaviour can be expected, but likely hard to investigate in detail.

I How is the multipartite entanglement structure of the global state
affected?

[Carrozza, Lionni + ... w.i.p.]
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