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Random matrices

[Wishart ’28, Wigner ’55]

▶ Theory of strong interactions [’t Hooft, etc.]

▶ Random surfaces [David, Kazakov, Fröhlich, etc.]

▶ Growing interfaces fluctuations [Kardar, Parisi, Zhang, etc.]

▶ …

▶ Free probability theory [Voiculescu, Guionnet, Speicher, Collins etc.]

Size of the matrices N is a parameter ⇒ “1/N expansion”, N → ∞ limit

Free probability: ex nihilo study of the limit regime in terms of the limit objects

How about tensors?
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Random tensors

Random matrices (Mab) generalize to random higher order tensors (Tabc ) [Ambjørn Durhuus Jonsson ’90,

Sasakura ’90, Boulatov ’92, Ooguri ’92, …] and [2010: RG, Rivasseau, Oriti, Bonzom, Carrozza, Benedetti, Lionni, Tanasa, Ben

Geloun, Ramgoolam, Dartois, Sasakura…]

- 1/N expansion (like random matrices)

- new large N limit (different from random matrices)

- large N field theory [Witten, Klebanov, etc.], spin glasses, [Zdeborová, Ros, etc.], tensor PCA [Ben Arous, etc.]

…

Lately – increased efforts to generalize “freeness” to tensors

▶ Identify the right objects at finite N , take the limit N → ∞ and find their intrinsic defining

properties

▶ Self contained formulation of the limit theory, without going through finite N first
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…

Lately – increased efforts to generalize “freeness” to tensors

▶ Identify the right objects at finite N , take the limit N → ∞ and find their intrinsic defining

properties

▶ Self contained formulation of the limit theory, without going through finite N first



This talk

No freeness theory for tensors (almost)!

But I will introduce the building blocks:

• free cumulants: the right objects that describe the limit regime

• asymptotic moments / free cumulants relations

Strategy – mimic what works for matrices, start at finite N and take the limit
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A technical prerequisite: partitions and permutations

Set partitions of {1, . . . n} into blocks {1, 2, 3, 4} :
{
{1, 2}, {3}, {4}

}
,
{
{1, 2}, {3, 4}

}

▶ poset ordered by refinement

{
{1, 2}, {3}, {4}

}
≤

{
{1, 2}, {3, 4}

}
, in fact lattice with global

sup 1n =
{
{1, . . . n}

}
and inf 0n =

{
{1}, {2}, . . . {n}

}
▶ if 1 < 2 < · · · < n, π is non-crossing if there exist no i < j < k < l with i, k ∈ B and

j, l ∈ B′ e.g.

{
{1, 2}, {3, 4}

}
is non-crossing while

{
{1, 3}, {2, 4}

}
is crossing

▶ non-crossing partitions are also a poset ordered by refinement

Permutations are bijections σ : {1, . . . n} → {1, . . . n}

▶ decompose into cycles: (1 2)(3 4), (1 3 2)(4)

▶ cycles of σ yield a partition π(σ) of {1, . . . n}, e.g.

{
{1, 2}, {3, 4}

}
,
{
{1, 3, 2}, {4}

}
▶ poset τ ⪯ σ, τ non-crossing on σ if π(τ) ≤ π(σ) and non-crossing and τ resepects the

orientation of σ

(135)(2)(4) non-crossing on (12345) ; (135)(24) , (153)(2)(4) are not

▶ pairing of white and black labels → partition of {1, . . . n, 1̄, . . . n̄} as Π(σ) =
{
{s, σ(s)}, ∀s

}
(1 3 2) →

{
{1, 3̄}, {3, 2̄}, {2, 1̄}

}
, (1)(2)(3) →

{
{1, 1̄}, {2, 2̄}, {3, 3̄}

}
,
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Invariant tensor probability measures

Basic building block → complex tensor T

ND
complex numbers (Ta1,...aD , T̄a1,...aD ), a

c = 1, . . .N

Probability measure for (Ta1,...aD , T̄a1,...aD ) with expectations invariant under local unitary

transformations

T ′
b1...bD =

∑
a

U(1)

b1a1
. . .U(D)

bDaD
Ta1...aD , T̄ ′

p1...pD =
∑
q

Ū(1)

p1q1
. . . Ū(D)

pDqD
T̄q1...qD

E[f (T , T̄)] = E[f (T ′, T̄ ′)]



Invariant tensor probability measures

Basic building block → complex tensor T

ND
complex numbers (Ta1,...aD , T̄a1,...aD ), a

c = 1, . . .N

Probability measure for (Ta1,...aD , T̄a1,...aD ) with expectations invariant under local unitary

transformations

T ′
b1...bD =

∑
a

U(1)

b1a1
. . .U(D)

bDaD
Ta1...aD , T̄ ′

p1...pD =
∑
q
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Tensor invariants, colored graphs and permutations

T ′
b1...bD =

∑
a

U(1)

b1a1
. . .U(D)

bDaD
Ta1...aD , T̄ ′

p1...pD =
∑
q

Ū(1)

p1q1
. . . Ū(D)

pDqD
T̄q1...qD

Invariant “traces”

∑
a1,q1 δa1q1 ...Ta1...aD T̄q1...qD ... → colored graphs

White (black) vertices for T (T̄ ).

edges of color c → pairing {s, σc(s)}
associated to the permutation σc
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Basis and decomposition

Lemma (Ben Geloun, Ramgoolam; Collins, RG, Lionni)

Denote σ = (σ1, . . . σD), σc ∈ S(n). For N > (n!)D−2, the family:

Trσ(T , T̄) =
∑
i,j

( n∏
s=1

Ti1s ...iDs T̄j1s̄ ...jDs̄

) n∏
s=1

D∏
c=1

δics j
c
σc (s)

,

up to relabeling σ → ησν is a basis in the space of homogeneous invariant polynomials of degree n in
T and T̄ .

Decomposition → averaging over U = U(1) ⊗ . . .U(D)
:

f (T , T̄) =
∫

dU f (UT , T̄U†)

∫
dU Ua1 i1 . . .Uan inUb

1̄
j
1̄

. . .Ubn̄jn̄ =
∑

σ,τ∈S(n)

n∏
s=1

δasbτ(s)
δis jσ(s)

W(στ−1)︸ ︷︷ ︸
Weingarten functions
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Expectations and connected expectations

Random variables x1, . . . xn, . . .

E[x1, . . . xn]︸ ︷︷ ︸
expectation

=
∑
π≤1n

Partitions of n elements

∏
B∈π

k[{xi , i ∈ B}]︸ ︷︷ ︸
connected expectation

Partitions are lattice for the refinement order → Möbius inversion

k[x1, . . . xn] =
∑
π≤1n

λπ︸︷︷︸
Möbius function (−1)|π|−1(|π|−1)!

∏
B∈π

E[{xs, s ∈ B}]

Multiplicative extensions Eπ =
∏

B∈π E[B] and kπ =
∏

B∈π k[B]

E1n =
∑

0n≤π≤1n

kπ k1n =
∑

0n≤π≤1n

λπ Eπ

︸ ︷︷ ︸
moments cumulants relations in any lattice

Main Message

We identified large N asymptotic moments (not what you expect), free cumulants (not that

simple) and a lattice (this one is fun!) such that asymptotic moments cumulants relations for

random tensors hold.
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Wishart matrices

Gaussian i.i.d. matrix entries:

E[f (X , X̄)] =
∫

[dXdX̄ ] f (X , X̄) e
−N(

∑
a,b Xab X̄ab)↖Tr[XX† ] ,

the only non zero connected expectation k(Xi1 i2 X̄j1j2 ) = N−1δi1j1δi2j2

E[Xi1
1
i2
1

. . . Xi1n i2n X̄j1
1̄

j2
1̄

. . . X̄j1n̄ j2n̄ ] =
∑

η∈S(n)

n∏
s=1

1

N
δi1s j

1

η(s)
δi2s j

2

η(s)

But we are interested in other “connected” expectations:

Φ[Tr(XX†)Tr(XX†)] = E[Tr(XX†)Tr(XX†)]− E[Tr(XX†)] E[Tr(XX†)] = “Tr(XX†)Tr(XX†)“ = 1

Φ “classical cumulants” defined via

moments cumulants relations in an appropriate lattice!
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Moments and classical cumulants

Classical cumulants → same definition as connected expectations, but respecting the connected

components of σ!

Π(σ) the partition of the vertices {1, . . . n, 1̄, . . . n̄} of σ in connected components σ1, . . .σq :

Φσ[T , T̄ ] =
∑

Π(σ)≤Π≤1n,n̄

λΠ

∏
B∈Π

E[Trσ|B
(T , T̄)]

︸ ︷︷ ︸
EΠ,σ

Φσ1,σ2,σ3
= E[Trσ1

Trσ2
Trσ3

]− E[Trσ1
Trσ2

]E[Trσ3
]− . . .+ 2E[Trσ1

]E[Trσ2
]E[Trσ3

]

Π(σ) ≤ Π ≤ 1n,n̄ lattice interval in the lattice of partitions → Möebius inversion works with the

same Möebius function λΠ:

E[Trσ(T , T̄)] =
∑

Π(σ)≤Π≤1n,n̄

∏
B∈Π

Φσ|B
(T , T̄)

︸ ︷︷ ︸
ΦΠ,σ

E[Trσ1
Trσ2

Trσ3
] = Φσ1,σ2,σ3

+Φσ1,σ2
Φσ3

+Φσ1,σ3
Φσ2

+Φσ2,σ3
Φσ1

+Φσ1
Φσ2

Φσ3

Equivalently, in terms of partitions among the connected components σ1 . . .σq :

E[Trσ1
. . . Trσq ] =

∑
π≤1q

∏
B∈π

Φ⋃
j∈B σj
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Finite N free cumulants

The generating function of connected expectations is invariant:

W(J, J̄) = lnE[eN
D/2

∑
a (̄Ja1...aD T̄a1...aD+Ja1...aD Ta1...aD )] =

∑
σ

Trσ(J, J̄) Kσ[T , T̄ ]

Finite N free cumulants→ the coefficients Kσ[T , T̄ ]

Theorem

The finite N free cumulants write in terms of the classical cumulants as:

Kσ[T , T̄ ] = NnD
∑
τ

∑
Π(τ )∨Π(σ)≤Π′′

λΠ′′
( ∑
Π(τ )≤Π′≤Π′′

ΦΠ′,τ (T , T̄)
)

︸ ︷︷ ︸
EΠ′′,τ (T ,T̄)

∏
B∈Π′′

D∏
c=1

W(σc|Bτ
−1

c|B
)

Proof → ln(ex) = ln(1 + (ex − 1)) =
∑

q≥1

(−1)q

q (ex − 1)q . . . hence:

lnE[ef (T ,T̄)] =
∑
n≥1

1

n!

∑
π≤1n

λπ

∏
B∈π

E[
∫

dU f (UT , T̄U†)|B|]
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Large N factorization and scaling assumptions

Large N factorization E[
∏

j Trσj ] ∼
∏

j Φσj

▶ Scaling assumption

lim
N→∞

1

N r(σ)↖choice

Φσ(T , T̄) → φσ(t, t̄)

▶ Expand rescaled expectations on classical cumulants

1

N
∑q

i=1
r(σi)

E[Trσ1
. . . Trσq ] =

∑
π≤1q

1

N
∑q

i=1
r(σi)−

∑
B∈π r(

⋃
j∈B σj)

∏
B∈π

1

N r(
⋃

j∈B σj)
Φ⋃

j∈B σj

▶ large N factorization

{
{1}, {2}, . . . {q}

}
dominates ⇔ r(σ) strictly sub additive

We choose the same scaling r(σ) as in the Gaussian case
a

which we conjecture to be strictly sub

additive, but we make no assumptions on φσ(t, t̄).

a[dT̄dT ] exp{−ND−1
∑

Ta1...aD T̄a1...aD} , r(σ) = n − minη∈Sn,Π(σ)∨Π(η)=1n,n̄

∑D
c=1

|σcη
−1| .
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The melon strikes back / Return of the melon / Revenge of the melon /

The melon awakens / The rise of Melon

1̄ 1

2 2̄


σ1 = (1)

σ2 = (1)

σ3 = (1)

→


σ1 = (1 2)

σ2 = (1)(2)

σ3 = (1)(2)

Well labelled melon at step n:

- insert n in a cycle in one σc

- append fixed point (n) to σc′,c′ ̸=c

Theorem (RG)

We have r(σ) = D− (D− 1)|Π(σ)| −Ω(σ)where |Π(σ)| is the number of connected components of
σ and Ω(σ) ≥ 0. Furthermore, Ω(σ) = 0 if and only if σ is melonic.

The leading invariants are connected, melonic and at fixed |Π(σ)| the leading invariants are melonic.

For D = 2 all the invariants are melonic (bi colored cycles)!
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The flip partial order

A flip on a well labelled melon σ− split a cycle of one σc into two:

(i1 . . . ipip+1 . . . iqiq+1 . . . il) → (i1 . . . ipiq+1 . . . il)(ip+1 . . . iq)

Any flip disconnects the melon (alternative definition)

Cut two edges on the same cycle of some σc ; reconnect respecting coloring

4̄

3̄

1̄

2̄
3

4

1

2

Flip partial order: τ ⪯ σ if τ can be obtained from σ by a sequence of flips (τ is melonic)
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Melonic cumulants

τc can be obtained from σc by a sequence of flips ⇔ τc is non-crossing on σc

τ ⪯ σ if and only if τc is non-crossing on σc for all c:

- τ ⪯ σ is isomorphic to a sub-lattice in the D-fold Cartesian product of lattices of non-crossing

partitions hence has the same, known, Möebius function M(στ−1)

Theorem (Collins, RG, Lionni)

For well labeled melonic, connected invariants σ in D ≥ 3 the free cumulants are:

κσ(t, t̄) = lim
N→∞

Kσ

N r(σ)=1

=
∑
τ⪯σ

M(στ−1)

|Π(τ )|∏
i=1

φτi (t, t̄) , φσ(t, t̄) =
∑
τ⪯σ

|Π(τ )|∏
i=1

κτi (t, t̄) ,

⪯ is the flip partial order on the set of melons and M(στ−1) is its Möebius function.

Asymptotic moments φσ - free cumulants κσ relations.
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Asymptotic moments φσ - free cumulants κσ relations.



Melonic cumulants

τc can be obtained from σc by a sequence of flips ⇔ τc is non-crossing on σc

τ ⪯ σ if and only if τc is non-crossing on σc for all c:

- τ ⪯ σ is isomorphic to a sub-lattice in the D-fold Cartesian product of lattices of non-crossing

partitions hence has the same, known, Möebius function M(στ−1)
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Kσ = NnD
∑
τ

∑
Π(τ )∨Π(σ)≤Π′′

λΠ′′
( ∑
Π(τ )≤Π′≤Π′′

ΦΠ′,τ
) ∏
B∈Π′′

D∏
c=1

W(σc|Bτ
−1

c|B
)

σ connected ⇒ Π(σ) = 1n,n̄ ⇒ Π′′ = 1n,n̄, and λ1n,n̄ = 1
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Kσ = NnD
∑
τ

( ∑
Π(τ )≤Π′

ΦΠ′,τ
) D∏
c=1

W(σcτ
−1

c )

W(ν) ∼ N−n−|ν|M(ν), and ΦΠ′,τ ∼ N
∑

B′∈Π′ r(τ |B′ )
∏

B′ φτ |B′ ⇒ Π′ = Π(τ ), τ ⪯ σ
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M(ν) =
∏
p≥1

[
(−1)p−1

1

p

(
2p− 2

p− 1

)
↖ Catalan number

]dp(ν)↖number of cycles of length p of ν

︸ ︷︷ ︸
Möebius function for lattice of non-crossing partitions

, M(ν) =
∏
c

M(νc)
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Instead of conclusion: the future

Tensor freeness: mixed joint free cumulants of melonic connected invariants are zero.

To do list:

• prove strict sub additivity of r(σ).
• asymptotic moments / free cumulants relations for:

• non melonic connected

• arbitrary

• what replaces the flip partial order for arbitrary graphs?

• there was something about centered moments and freeness…

We have barely scratched the surface of tensor freeness at large N !

What is an infinite random tensor?
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