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Lately — increased efforts to generalize “freeness” to tensors

» Identify the right objects at finite N, take the limit N — oo and find their intrinsic defining
properties

» Self contained formulation of the limit theory, without going through finite N first
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e asymptotic moments / free cumulants relations



But | will introduce the building blocks:

o free cumulants: the right objects that describe the limit regime

e asymptotic moments / free cumulants relations

Strategy — mimic what works for matrices, start at finite N and take the limit
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A technical prerequisite: partitions and permutations

Set partitions of {1, ... n} into blocks {1,2,3,4} : {{1,2},{3},{4}}, {{1,2},{3,4}}

»

poset ordered by refinement {{1,2}, {3}, {4}} < {{1,2},{3,4}}, in fact lattice with global
sup 1, = {{1,...n}} and inf0, = {{1}, {2}, ... {n}}

if 1 <2 < .- < n,mis non-crossing if there exist no i < j < k < [with i,k € Band
j,l € B eg. {{1,2},{3,4}} is non-crossing while {{1,3}, {2, 4} } is crossing

non-crossing partitions are also a poset ordered by refinement

Permutations are bijections o : {1,...n} — {1,...n}

>

>

>

decompose into cycles: (12)(34), (132)(4)

cycles of o yield a partition w(c) of {1,...n}, eg. {{1,2},{3,4}}, {{1,3,2},{4}}

poset 7 =X o, T non-crossing on o if m(7) < 7(o) and non-crossing and T resepects the
orientation of o

(135)(2)(4) non-crossing on (12345) ; (135)(24), (153)(2)(4) are not

pairing of white and black labels — partition of {1, ... ...n}asN(o) = {{s, o( a(s)}, s}

(132) — {{1,3},{3,2}, {2, 7} }, (M@)(3) = {{1,7},{2,2},{3,3}},
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Denote o = (o1, . ..0p),0c € S(n). For N > (n!)P~2, the family:
n n D
Tro(T, 1) = > (IT 7o Ty o) TTT T o
ij o s=1 s=1c=1 ¢

up to relabeling o — nov is a basis in the space of homogeneous invariant polynomials of degree n in
TandT.

Decomposition — averaging over U = U ® ... u®):

£(T, T):/duf(UT, Tuth)

n
/dU Uﬂ1i1 ~~‘Uani"UijT~'~Ub,-,j7, = Z H(Sﬂsbi Eis}'m W(O’T_1)

7(s)
s S s=1
o,mes(n) Weingarten functions
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Expectations and connected expectations

Random variables x1, ... xn, . ..
Elx1,...xs] = E | | k[{xi, i € B}]
—— ———
. 7<lp Bew ”
expectation Partitions of n elements connected expectation

Partitions are lattice for the refinement order — Mdbius inversion

kixa,.ox = \A,T/ 11 El{x.s € B}]

<1, Bew
Mobius function (—1)\”\*1(‘7\1,1)!

Multiplicative extensions Ex = [[gc,. E[B] and kr = []zc. k[B]

Ei,= . ke k= >  ArEg

0, <m<1p 0, <7<1p

moments cumulants relations in any lattice

Main Message

We identified large N asymptotic moments (not what you expect), free cumulants (not that
simple) and a lattice (this one is fun!) such that asymptotic moments cumulants relations for
random tensors hold.
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the only non zero connected expectation k(X2 Xj2) = N7'61,18,
n

- 1
X Xpal = 2 TIghun; dee

(s)



Gaussian i.i.d. matrix entries:
B = [10xaR] (6 R) & Tt

; Yoo) — N—T
the only non zero connected expectation k(X2 X;12) = N710,1102p

< < 1
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Wishart matrices

Gaussian i.i.d. matrix entries:

E[f(X,X)] = /[dXd)'(] FOOX) ¢ et

the only non zero connected expectation k(X;1 2

Xﬂb)_(ab)\n[xx’r]
b

Xj1jz) S N715,«1j15,~2j2

ZH& 82

nES(n) =1 @ i

But we are interested in other “connected” expectations:

S[Tr(xx DY Tr(XxT)] = E[Tr(XXT)Tr(xx )] — E[Tr(xx )] E[Tr(xXT)] = “Tr(xxT)Tr(xxT)“ =1

® “classical cumulants” defined via
moments cumulants relations in an appropriate lattice!
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Classical cumulants — same definition as connected expectations, but respecting the connected
components of o’!

M(o) the partition of the vertices {1,...n,1,... A} of o in connected components o1, ... o¢:

O[T, T1= > An[]E[Mre (7,7)]

Me)<n<t,  BeN

En,o
boy 00,03 = E[Tro, Tro, Tras ] — E[Tro, Tre, |JE[Tres] — - . . + 2E[Tre, JE[Tre, |E[Tro,]

MN(o) < M < 1,5 lattice interval in the lattice of partitions — M&ebius inversion works with the
same Moebius function Ap:

E[lta(T, D= > [[®e,(1.7)

N(o)<N<1,7 BEM

¢I'I,o'
E[Tre,Tro, Troy] = oy 0,05 + Por,0:Pos + Poy,03Po; + Poy03 Py + Pory P, Pory

Equivalently, in terms of partitions among the connected components o1 ... og:

ETre, ... Trog] = Z H PUjes o

n<lq BET
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Finite N free cumulants

The generating function of connected expectations is invariant:

W(,J) = B[ El 0T a0t 0T 0] = 3 Tr(1]) Ko [T, 7]

Finite N free cumulants— the coefficients Ko [T, T]

The finite N free cumulants write in terms of the classical cumulants as:

Kol T1=NC30 3 (> en(1D) [] [TWoasm,)

T N(r)vN(e)<n” n(r)<n/<n’ BeM/’ c=1

]En//’T(T,T)

Proof — In(e*) = In(1+ (¥ — 1)) = > 5, %(ex — 1)9... hence:

BT =3 LS ] E[/ du £(uT, TU') /8]

n>1"" <1, Bem



(@ The large N limit






» Scaling assumption

1 = _
lim ———&,(7T,T t,t
Nl)moo Nr(a)\chaice o-( ’ ) - 9017( ’ )



Large N factorization and scaling assumptions

Large N factorization IE[HJ Tro] ~ Hj g,

» Scaling assumption

1 = -
lim ———®o,(7, T t,t
NL>moo Nr(a)\choice a( ’ ) - Qoa( ’ )

» Expand rescaled expectations on classical cumulants

1 1 1
——E[Trg, ... Tre,] = d. .
NZ?:1 (o) [ fon ' q] Z NZL] r(oi)=Xper "(Ujecs o)) 1_‘[ Nr(Uj€BUj) Ujes 7

7<lq Benm



Large N factorization and scaling assumptions

Large N factorization E[HJ Tro] ~ Hj g,

» Scaling assumption

1 = -
lim ———&, (T, T t,t
NL>moo Nr(a)\choice a( ’ ) - Qoa( ’ )

» Expand rescaled expectations on classical cumulants

1 1 1
——E[Trg, ... Tre,] = d. .
NE?:1 (o) [ fon ' q] Z NZL] r(oi)=Xper "(Ujecs o)) 1_‘[ Nr(Uj€BUj) Ujes 7

7<lq Benm

> large N factorization {{1}, {2},...{q}} dominates < r(o) strictly sub additive



» Scaling assumption
1 = -
lim ———&5(T,T) = po(t,1)

N—oo Nr(a)\chaice

» Expand rescaled expectations on classical cumulants

1 1 1
———E[Trey ... Tre,] = § | | > ;
WL ey e Tl = 2 e S G M ST PV

<Tg

> large N factorization {{1},{2},...{q}} dominates <> r(c) strictly sub additive
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The melon strikes back / Return of the melon / Revenge of the melon /
The melon awakens / The rise of Melon
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Well labelled melon at step n:
g1 = (1) g1 = (1 2)

(0] :(1) — [op) :(

; - insert nin a cycle in one o
o3 = (1) o = (1)(2) - append fixed point (n) to o/ /4

Theorem (RG)

We have r(o) = D — (D — 1)|M(o)| — Q(o)where |[1(c)| is the number of connected components of
o and Q(o’) > 0. Furthermore, (o) = 0 if and only if o is melonic.

The leading invariants are connected, melonic and at fixed |[1(o)| the leading invariants are melonic.
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Well labelled melon at step n:
g1 = (1) g1 = (1 2)

(0] :(1) — [op) :(

; - insert nin a cycle in one o
o3 = (1) o = (1)(2) - append fixed point (n) to o/ /4

Theorem (RG)

We have r(o) = D — (D — 1)|M(o)| — Q(o)where |[1(c)| is the number of connected components of
o and Q(o’) > 0. Furthermore, (o) = 0 if and only if o is melonic.

The leading invariants are connected, melonic and at fixed |[1(o)| the leading invariants are melonic.

For D = 2 all the invariants are melonic (bi colored cycles)!
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Melonic cumulants

T¢ can be obtained from o by a sequence of flips < 7 is non-crossing on o

T =X o if and only if 7 is non-crossing on o for all c:

- T X o is isomorphic to a sub-lattice in the D-fold Cartesian product of lattices of non-crossing
partitions hence has the same, known, Méebius function M(om~")

Theorem (Collins, RG, Lionni)
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Maéebius function for lattice of non-crossing partitions
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