Randomized Truncation

Aram Harrow IHP Tensor workshop 15 October 2024

work in progress with Angus Lowe & Freek Witteveen; Minh Tran & Alexander Zlokapa

Motivation: matrix product state truncation N qubits with state $\psi_{i_1,\ldots,i_n} \in (\mathbb{C}^2)^{\otimes n}$ rank ≤k across any cut $O(Nk^2)$ degrees of freedom suffice. k = bond dimension $2 \times k - k \times 2 \times k - k \times 2 \times k - k \times 2 \times k - \dots \qquad k \times 2 \times k - 2 \times k$ $\Psi_{i_1,\ldots,i_n} = \operatorname{tr}[T_{i_1}^{(1)}T_{i_2}^{(2)}\cdots T_{i_n}^{(n)}] \quad \text{with each } T_i^{(a)} \in \mathbb{C}^{k \times k}$

Given an MPS, how should we reduce its bond dimension?

A simpler problem Given $|\psi\rangle = \sum v_i |i\rangle \otimes |i\rangle$ with $v_1 \ge \cdots \ge v_d \ge 0$, i=1what is the best approximation with Schmidt rank $\leq k$?

A simpler problem Given $|\psi\rangle = \sum_{i=1}^{d} v_i |i\rangle \otimes |i\rangle$ with $v_1 \ge \cdots \ge v_d \ge 0$, what is the best approximation with Schmidt rank \le k?

Obvious answer:

$$|\varphi\rangle \propto \sum_{i=1}^{k} v_i |i\rangle \otimes |i\rangle$$

A simpler problem Given $|\psi\rangle = \sum v_i |i\rangle \otimes |i\rangle$ with $v_1 \ge \cdots \ge v_d \ge 0$, i=1what is the best approximation with Schmidt rank $\leq k$?

Obvious answer:

$$|\varphi\rangle \propto \sum_{i=1}^{k} v_i |i\rangle \otimes |i\rangle$$

Fidelity

 $= \langle v | w \rangle$ for pure states

An even simpler problem d Given $|v\rangle = \sum v_i |i\rangle$ with $v_1 \ge \cdots \ge v_d \ge 0$, i=1what is the best approximation with sparsity $\leq k$?

An even sin
Given
$$|v\rangle = \sum_{i=1}^{d} v_i |i\rangle$$
 with $v_1 \ge v_i$
what is the best approximation w

<u>Obvious answer:</u>

$$|w\rangle = F^{-1} \sum_{i=1}^{k} v_i |i\rangle$$

mpler problem

 $\cdots \geq v_d \geq 0$,

with sparsity $\leq k$?

Fidelity

 $F(\rho, \sigma) = \left\| \sqrt{\rho} \sqrt{\sigma} \right\|_{1}$ $= |\langle v | w \rangle|$ for pure states

What about other metrics				
Given $ v\rangle = \sum_{i=1}^{n} v_i i\rangle$ with $v_1 \ge \cdots \ge v_d \ge 0$, find a close k-span				
	Metric	Definition	Optimum	
	F fidelity	$\left \left\langle v \mid w \right\rangle\right $	$\sqrt{\sum_{i=1}^{k} v_i^2}$	
	T trace distance	$\frac{1}{2} \ v\rangle\langle v - w\rangle\langle w \ _{1}$	$F^2 + T^2 = 1$ for pure states	
	D relative entropy	$\langle v - ln \sigma v \rangle$	0 or ∞	
	$D_{max} = ln(1+R)$ $D_{max} = max-relative entropy$ R = robustness	min{λ: v>⟨v ≤e ^λ σ}	0 or ∞	

rse $|w\rangle$.

Metric

Definition

with Angus Lowe and Freek Witteveen

Pure optimum Mixed optimum

Metric	Definition
F fidelity	$\sqrt{\langle v \sigma v \rangle}$

Pure optimum	Mixed optimum
$\sqrt{\sum_{i=1}^{k} v_i^2} := \sqrt{1-\epsilon}$	$\sqrt{1-\epsilon}$

Metric	Definition	Pure optimum	Mixed optimum
F fidelity	$\sqrt{\langle v \sigma v \rangle}$	$\sqrt{\sum_{i=1}^{k} v_i^2} := \sqrt{1-\epsilon}$	$\sqrt{1-\epsilon}$
T trace distance	$\frac{1}{2} \ v\rangle \langle v - \sigma \ _{1}$	$\sqrt{\epsilon}$	$\frac{\epsilon}{2} \lessapprox T \le \sqrt{\epsilon}$

Metric	Definition	Pure optimum	Mixed optimum
F fidelity	$\sqrt{\langle v \sigma v \rangle}$	$\sqrt{\sum_{i=1}^{k} v_i^2} := \sqrt{1-\epsilon}$	$\sqrt{1-\epsilon}$
T trace distance	$\frac{1}{2} \ v\rangle \langle v - \sigma \ _{1}$	$\sqrt{\epsilon}$	$\frac{\epsilon}{2} \lessapprox T \le \sqrt{\epsilon}$
D relative entropy	$\langle v - ln \sigma v \rangle$	0 or ∞	?

Metric	Definition	Pure optimum	Mixed optimum
F fidelity	$\sqrt{\langle v \sigma v \rangle}$	$\sqrt{\sum_{i=1}^{k} v_i^2} := \sqrt{1-\epsilon}$	$\sqrt{1-\epsilon}$
T trace distance	$\frac{1}{2} \ v \rangle \langle v - \sigma \ _{1}$	$\sqrt{\epsilon}$	$\left \begin{array}{c} \frac{\epsilon}{2} \lessapprox T \leq \sqrt{\epsilon} \end{array} \right $
D relative entropy	$\langle v - ln \sigma v \rangle$	0 or ∞	?
R robustness	min{R: v>⟨v ≤(1+R)σ}	0 or ∞	later

k=1

Example 1 $|v\rangle = \sqrt{1-\epsilon} |0\rangle + \sqrt{\epsilon} |1\rangle \qquad |v\rangle\langle v| = \begin{pmatrix} 1-\epsilon & \sqrt{\epsilon(1-\epsilon)} \\ \sqrt{\epsilon(1-\epsilon)} & \epsilon \end{pmatrix}$

k=1

Best 1-sparse approximation

Example 1 $|v\rangle = \sqrt{1-\epsilon} |0\rangle + \sqrt{\epsilon} |1\rangle \qquad |v\rangle\langle v| = \begin{pmatrix} 1-\epsilon & \sqrt{\epsilon(1-\epsilon)} \\ \sqrt{\epsilon(1-\epsilon)} & \epsilon \end{pmatrix}$

Example 2 $|v\rangle = \sqrt{1 - 2\epsilon} |0\rangle + \sqrt{\epsilon} |1\rangle + \sqrt{\epsilon} |2\rangle$ $|v\rangle\langle v| = \begin{cases} 1 - 2\epsilon & \sqrt{\epsilon(1 - 2\epsilon)} & \sqrt{\epsilon(1 - 2\epsilon)} \\ \sqrt{\epsilon(1 - 2\epsilon)} & \epsilon & \epsilon \\ \sqrt{\epsilon(1 - 2\epsilon)} & \epsilon & \epsilon \end{cases}$

Example 2 $|v\rangle = \sqrt{1 - 2\epsilon} |0\rangle + \sqrt{\epsilon} |1\rangle + \sqrt{\epsilon} |2\rangle$ $|v\rangle\langle v| = \begin{cases} 1 - 2\epsilon & \sqrt{\epsilon(1 - 2\epsilon)} & \sqrt{\epsilon(1 - 2\epsilon)} \\ \sqrt{\epsilon(1 - 2\epsilon)} & \epsilon & \epsilon \\ \sqrt{\epsilon(1 - 2\epsilon)} & \epsilon & \epsilon \end{cases}$

Best 2-sparse approximation

	σ	F	T	R
Pure	$\propto \begin{pmatrix} 1-2\epsilon & \sqrt{\epsilon(1-2\epsilon)} & 0\\ \sqrt{\epsilon(1-2\epsilon)} & \epsilon & 0\\ 0 & 0 & 0 \end{pmatrix}$	$\sqrt{1-\epsilon}$	$\sqrt{\epsilon}$	\sim
Mixed	$\sqrt{1-4\epsilon} \left 0 \right\rangle$ + $\sqrt{4\epsilon} \left 1 \operatorname{or} 2 \right\rangle$	≈1-€	O(ɛ)	2ε

$|v\rangle = \sqrt{\frac{1}{d}} \sum_{i=1}^{d} |i\rangle$

Example 3

$k=d(1-\epsilon)$

Example 3

 $|v\rangle = \sqrt{\frac{1}{d}} \sum_{i=1}^{d} |i\rangle \qquad k=d(1-\varepsilon)$

Best k-sparse approximation

	σ		T	R
Pure	$ S\rangle = \sqrt{\frac{1}{k}} \sum_{i \in S} i\rangle$	$\sqrt{1-\epsilon}$	$\sqrt{\epsilon}$	\sim
Mixed	$\mathbb{E} S\rangle\langle S $	$\sqrt{1-\epsilon}$	≈£	Е 1-Е

=d(1-ε)

 $|v\rangle = \sqrt{\frac{1-\epsilon}{k}} \sum_{i=1}^{k} |i\rangle + \sqrt{\frac{\epsilon}{d}} \sum_{i=k+1}^{d+k} |i\rangle$

 $d \gg k, dk\epsilon > 1$

Example 4 + $\sqrt{\frac{c}{d}} \sum_{i=k+1}^{d+k} |i\rangle$

$$\begin{aligned} \mathsf{EXAC}\\ v\rangle &= \sqrt{\frac{1-\epsilon}{k}}\sum_{i=1}^{k}|i\rangle + \sqrt{\frac{\epsilon}{d}}\sum_{i=k+1}^{d+k} \end{aligned}$$

 $d \gg k, dk\epsilon > 1$

Best k-sparse approximation

mple 4 $k | i \rangle$

F		R
1 <i>– e</i>	$\sqrt{\epsilon}$	∞
1 <i>-e</i>	$\sqrt{\epsilon}$	de or de/k

k-incoherent states $I_{k} = conv\{|w\rangle\langle w| : |w\rangle \text{ is } k\text{-sparse}\}$

k-incoherent states $I_k = CONV\{|w\rangle\langle w| : |w\rangle \text{ is k-sparse}\}$

 $|v\rangle\langle v|$ k

Goals •max $F(|v\rangle\langle v|,\sigma)$ •min $|| |v \rangle \langle v | - \sigma ||_1$ •min D($|v\rangle\langle v| || \sigma$) •min R s.t. $|v\rangle\langle v| \leq (1+R)\sigma$

k-incoherent states $I_k = conv\{|w\rangle\langle w| : |w\rangle \text{ is k-sparse}\}$

 $|v\rangle\langle v|$ k

Goals •max $F(|v\rangle\langle v|,\sigma)$ •min $|| |v \rangle \langle v | - \sigma ||_1$ •min D($|v\rangle\langle v| || \sigma$) •min R s.t. $|v\rangle\langle v| \leq (1+R)\sigma$ However, it's NP-complete to •Test membership in I_k . • Optimize linear functions over I_k . •Can "brute-force" in time d^{O(k)}

k-incoherent states $I_k = conv\{|w\rangle\langle w| : |w\rangle \text{ is k-sparse}\}$

 $|v\rangle\langle v|$ Goals •max $F(|v\rangle\langle v|,\sigma)$ •min $||v\rangle\langle v| - \sigma ||_1$ •min D($|v\rangle\langle v| || \sigma$) k •min R s.t. $|v\rangle\langle v| \leq (1+R)\sigma$ However, it's NP-complete to •Test membership in I_k . • Optimize linear functions over I_k . •Can "brute-force" in time d^{O(k)}

A = adjacency matrix of a graph max {tr A σ : $\sigma \in I_k$ } = k-1 iff A has a k-clique

 $\mathsf{F} = \|\mathsf{V}\|_{(\mathsf{k})}$

 $\mathsf{F} = \|\mathsf{V}\|_{(\mathsf{k})}$

[Agyriou, Foygel, Srebro. NeurIPS 2012]

k-support norm $\|v\|_{(k,*)} = \max_{\|w\|_{(k)} \le 1} \langle v, w \rangle$ $= \min\left\{ \sum_{\alpha} \|w_{\alpha}\|_{2} : v = \sum_{\alpha} w_{\alpha}, \|w_{\alpha}\|_{0} \le k \right\}$

 $\mathsf{F} = \|\mathsf{V}\|_{(\mathsf{k})}$

[Agyriou, Foygel, Srebro. NeurIPS 2012]

k-support norm $\|v\|_{(k,*)} = \max_{\|w\|_{(k)} \le 1} \langle v, w \rangle$ $= \min\left\{ \sum_{\alpha} \|w_{\alpha}\|_{2} : v = \sum_{\alpha} w_{\alpha}, \|w_{\alpha}\|_{0} \le k \right\}$

 $\|v\|_{\infty} \le \|v\|_{(k)} \le \|v\|_{2} \le \|v\|_{(k,*)} \le \|v\|_{1}$

 $\mathsf{F} = \|\mathsf{V}\|_{(\mathsf{k})}$

[Johnston, Li, Plosker, Poon, Regula. PRA 2018; Regula. J. Phys. A 2018]

[Agyriou, Foygel, Srebro. NeurIPS 2012]

 $\begin{aligned} &\|v\|_{(k,*)} = \max_{\|w\|_{(k)} \le 1} \langle v, w \rangle \\ &= \min \left\{ \sum_{\alpha} \|w_{\alpha}\|_{2} : v = \sum_{\alpha} w_{\alpha}, \|w_{\alpha}\|_{0} \le k \right\} \end{aligned}$

 $\|v\|_{\infty} \le \|v\|_{(k)} \le \|v\|_2 \le \|v\|_{(k,*)} \le \|v\|_1$

$$1 + R = \|v\|_{(k,*)}^2$$

[Johnston, Li, Plosker, Poon, Regula. PRA 2018]

[Johnston, Li, Plosker, Poon, Regula. PRA 2018]

k-support norm $\|v\|_{(k,*)} = \max_{\|w\|_{(k)} \le 1} \langle v, w \rangle$ $1 + R = \|v\|_{(k,*)}^2 = \sum_{i=1}^{k-r-1} v_i^2 + \frac{s_{k-r}^2}{r+1}$ where r is chosen so that $v_{k-r-1} > \frac{S_{k-r}}{r+1} \ge v_{k-r}$ and $s_{k-r} = \sum v_i$ i > k - r

[Johnston, Li, Plosker, Poon, Regula. PRA 2018]

k-support norm $\|v\|_{(k,*)} = \max_{\|w\|_{(k)} \le 1} \langle v, w \rangle$ $1 + R = \|v\|_{(k,*)}^2 = \sum_{i=1}^{k-r-1} v_i^2 + \frac{s_{k-r}^2}{r+1}$ where r is chosen so that $v_{k-r-1} > \frac{s_{k-r}}{r+1} \ge v_{k-r}$ and $s_{k-r} = \sum v_i$ $i \ge k - r$

[Johnston, Li, Plosker, Poon, Regula. PRA 2018]

Top-k norm

$$F^{2} = \|v\|_{(k)}^{2} = \sum_{i=1}^{k} \sum_{i=1}^{k} \int_{k}^{k} |v||_{(k)}^{2} = \sum_{i=1}$$

Ensemble construction $(v_1, \ldots, v_{k-r-1}, 0, \alpha, \alpha, 0, \alpha, 0, 0, 0, \alpha, \ldots)$ $\|v\|_{(k,*)}$ where $\alpha = \frac{s_{k-r}}{r+1}$ appears in entry i with probability $\frac{v_i}{r}$

 $T = \min_{\sigma \in I_k} \frac{1}{2} \| vv^* - \sigma \|_1$

- = min max tr[$M(vv^* \sigma)$] $\sigma \in I_k \quad 0 \leq M \leq I$
- $= \min \max tr[mm^*(vv^* \sigma)]$ $\sigma \in I_k \|m\|_2 \leq 1$
- = min max tr[$\rho(vv^* \sigma)$] $\sigma \in I_k \|\rho\|_{S_1} \leq 1$
- = max min tr[$\rho(vv^* \sigma)$] $\|\rho\|_{S_1} \leq 1 \ \sigma \in I_k$
- $= \max \min tr[mm^*(vv^* \sigma)]$ $\|m\|_2 \leq 1 \sigma \in I_k$

 $= \max_{\|m\|_{2} \le 1} |\langle m | v \rangle|^{2} - \|m\|_{(k,*)}^{2}$

Irace distance

 $vv^* - \sigma$ has one positive evalue

convexify

minimax

Trace distance via dual $T = \min_{\sigma \in I_k} \frac{1}{2} \| v \rangle \langle v | -\sigma \|_1 = \max_{\|m\|_2 \le 1} |\langle m | v \rangle|^2 - \|m\|_{(k),*}^2$ 0.30

Optimal measurement is $|m\rangle\langle m|$. Find m using Lagrange multipliers

Sample from $\begin{cases} v_1, ..., v_{k-r-1} \\ \alpha, 0, 0, \alpha, 0 \\ 0 & \ell \leq i \end{cases} \quad k - r \leq i < \ell \\ \ell \leq i \end{cases}$

Metric	Definition	Pure optimum	Mixed optimum
F fidelity	$ \langle v w \rangle $	$\sqrt{\sum_{i=1}^{k} v_i^2} := \sqrt{1 - \epsilon}$	$\sqrt{1-\epsilon}$
T trace distance	$\frac{1}{2} \ v\rangle\langle v - w\rangle\langle w \ _{1}$	$\sqrt{\epsilon}$	$\frac{\epsilon}{2} \lessapprox T \le \sqrt{\epsilon}$
D relative entropy	$\langle v - ln \sigma v \rangle$	0 or ∞	$\epsilon \le D \le D_{max}$
$D_{max} = ln(1+R)$	$\min\{\lambda: v\rangle \langle v \leq e^{\lambda}\sigma\}$	0 or ∞	$1 + R = \ v\ _{(k,*)}^2$

Application: Hamiltonian simulation Goal: e^{-iHt} for $H = \sum_{j=1}^{N} \beta_j h_j$ with $||h_j|| = 1$ and $\sum_{j=1}^{N} \beta_j f_j = 1$. j = 1

Application: Hamiltonian simulation Goal: e^{-iHt} for $H = \sum_{j=1}^{n} \beta_j h_j$ with $||h_j|| = 1$ and $\sum_{j=1}^{n} \beta_j h_j = 1$. i=1

Trotter: $\left(e^{-i\beta_1h_1\delta}e^{-i\beta_2h_2\delta}\cdots e^{-i\beta_Lh_L\delta}\right)^{t/\delta}$

Application: Hamiltonian simulation Goal: e-iHt for $H = \sum_{j=1}^{L} \beta_j h_j$ with $||h_j|| = 1$ and $\sum_j \beta_j = 1$.

Trotter: $\left(e^{-i\beta_1h_1\delta_2}e^{-i\beta_2h_2\delta}\cdots e^{-i\beta_Lh_L\delta}\right)^{t/\delta}$ qDRIFT: Apply $e^{-i\delta h_j}$ with probability β_i . Repeat t/ δ times.

Application: Hamiltonian simulation Goal: e^{-iHt} for $H = \sum_{j=1}^{L} \beta_j h_j$ with $||h_j|| = 1$ and $\sum_{j=1}^{L} \beta_j h_j = 1$. *i*=1 Trotter: $\left(e^{-i\beta_1h_1\delta_2}e^{-i\beta_2h_2\delta_2}e^{-i\beta_Lh_L\delta}\right)^{t/\delta}$

qDRIFT: Apply $e^{-i\delta h_j}$ with probability β_i . Repeat t/ δ times.

Mixed low-rank approximation: To first order in t, $|\psi\rangle - it \sum \beta_j h_j |\psi\rangle \approx \text{mixture of states of the form } \propto |\psi\rangle - ith_j |\psi\rangle.$ j=1

randomized H simulation

$$H = \sum_{j=1}^{L} \beta_{j} h_{j} \text{ with } ||h_{j}|| = 1, \sum_{j} \beta_{j} = 1 \text{ and } \beta_{j} = 1$$

• Randomize: Evolve according to $H(u) = \sum_i u_i h_i$ with probability p_u . Unbiased (to first order): $\sum p_u u = \beta$

Previous work: SparSto [Ouyang, White, Campbell. 2020] Partially random Trotter [Jin, Li. 2021] composite qDRIFT [Hagan, Wiebe. 2022] and [Pocrnic, Hagan, Carrasquilla, Segal, Wiebe. 2023]

and $\beta_1 \ge \beta_2 \ge \cdots$

Optimize variance and second-order bias: $\|\beta\beta^T - \sum p_u uu^T\|_{various}$ U

Second-order error terms: $\|\beta\beta^T - \sum p_u u u^T\|$ state dept.

•maximally mixed marginals —> each $h_i |\psi\rangle$ is orthogonal

•low-frustration states —> smaller norm

state-dependent simulation

Data needed $\langle \psi | h_i h_j | \psi \rangle$

Classical vectors

- Approximate v with a random k-sparse w.
- $v = \mathbb{E}[w]$
- minimize $\|vv^* \mathbb{E}[ww^*]\|_{\infty} = \epsilon$
- If $f(v) = \langle m, v \rangle$ then $\epsilon = \max \operatorname{Var}[f(w) f(v)]$ \mathcal{M}
- Same trace-distance construction works for $\|\cdot\|_{\infty}$