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Introduction
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Multi-Layer Perceptron (MLP)

MLP (multilayer-perceptron) is a composition of transforms in the
form of:

y = ϕ(Wx), x ∈ Rm

where W is a parameter matrix (the transforms do not share the
parameter matrices).

More precisely: Let n0, n1, . . . , nL ∈ N. Parameters are

θ = (Wℓ, bℓ)ℓ=1,...,L,Wℓ ∈ Rnℓ×nℓ−1 , bℓ ∈ Rnℓ .

Forward propagation: for x ∈ Rn0 , set x0 = x and inductively

hℓ = Wℓxℓ−1 + bℓ, xℓ = ϕ(hℓ) := ϕ(hℓ,i )i∈[nℓ].

Finally, define the output by fθ(x) = hL.
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Deep Learning

Generally, a standard formulation of supervised deep learning is as
follows:

1. We are given a finite set of input/output data pairs
(x , y) ∈ D.

2. We are given a deep neural network (DNN), a composition of
parameterized transformations that maps a real vector to a
real vector.

3. We are given an object function: e.g. mean squared loss:

L(x , y , θ) = 1

2nL

nL∑
j=1

(fθ(x)j − yj)
2.

We optimize DNN w.r.t. the L with some regularizations.

4. Evaluate trained DNN on test data separated from D.

4 / 32



Random Neural Network

Random matrices appear in the initialization of neural networks:
e.g., Gaussian (Ginibre) random matrix:

(Wℓ)i ,j ∼ N (0, σ2
w/N), i.i.d.

e.g., Haar distributed orthogonal matrix:

Wℓ = σwO,O ∼ Haar Orthogonal

Furthermore, many research studies random-matrix weights in deep
learning theory, such as mean-field theory, edge of chaos, signal
propagation, neural network Gaussian process, neural tangent
kernel, and dynamical isometry (and many topics in traditional
statistical mechanics of NN).
Often, large dimensional approximations are used in them.

5 / 32



Random Tensor

So, what role do random tensors play in deep learning?
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Random Tensor

So, what role do random tensors play in deep learning?
We introduce Tolstikhin’s MLP-Mixer as an example of neural
networks related to tensor product and random tensors. (w/ large
dimensional analysis)
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MLP-Mixer
MLP-Mixer: A belief structure with high performance in
ImageNet-1k.

Figure: MLP-Mixer architecture [Tolstikhin+(NeurIPS 2021,
arXiv:2105.01601)]
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MLP-Mixer

The input of MLP-Mixer is not input RGB images (Height ×
Width ×3 data ) itself, but S × C matrix of as follows:

Here, S is the number of patches (= number of tokens), C = 3p2

is the number of entries in each patch, and p is the patch size.
Such patching of images is similar to Vision Transformer (ViT).

8 / 32



Blocks of MLP-Mixer

MLP-Mixer is a composition of

Token-MLP(X )= W2ϕ(W1X ),

Channel-MLP(X ) = ϕ(XW3)W4,

where W1 ∈ RγS×S , W2 ∈ RS×γS , W3 ∈ RC×γC , W4 ∈ RγC×C .
The Token-MLP is the difference between MLP-Mixer and ViT.
MLP-Mixer replaces the self-attention block of ViT with the
Token-MLP. ViT’s blocks:

Attention(X )= σ(Q(X )K (X )⊤)V (X ),

Channel-MLP(X ) = ϕ(XW3)W4.

MLP-Mixer (76.44% top-1 acc, ImageNet-1k) performs similarly to
ViT (79.67%).
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Effective Expression of MLP-Mixer
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Similarity between MLP-Mixer and MLP via vectorization
Vectorization and effective width

We represent the vectorization operation of the matrix S × C
matrix X by vec(X ):

(vec(X ))(j−1)d+i = Xij , (i = 1, . . . ,S , j = 1, . . . ,C ).

There exists a well-known equation for the vectorization operation
and the tensor (or Kronecker) product denoted by ⊗:

vec(WXV ) = (V⊤ ⊗W )vec(X )

for W ∈ RS×S and V ∈ RC×C .
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Effective Width of Mixing Layers

The vectorization of the feature matrix WXV is equivalent to a
fully connected layer of width:

m = SC

We refer to this m as the effective width of mixing layers.
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Vectorization of Feature Matrices

Channel-Mixing layer is converted into:

vec(X ) 7→ (IC ⊗W )vec(X )

Token-Mixing layer is converted into:

vec(X ) 7→ (V⊤ ⊗ IS)vec(X )
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Sparsity in Effective MLP

Typically, S ,C ∼ 102 to 103

Mixer is equivalent to an extremely wide MLP:
m = SC = 104 to 106

The ratio of non-zero entries in the weight matrices:

▶ IC ⊗W : 1/C

▶ V⊤ ⊗ IS : 1/S

Therefore, the weight of the effective MLP is highly sparse.
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Commutation Matrix

A commutation matrix JC is defined as:

Jcvec(X ) = vec(X⊤)

Note that for any entry-wise function ϕ:

Jcϕ(x) = ϕ(Jcx), x ∈ Rm

Also:
V⊤ ⊗ IS = J⊤c (IS ⊗ V )Jc
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Effective Expression of MLP-Mixer

Channel-MLP Block:

u = ϕ(Jc(IC ⊗W2)ϕ((IC ⊗W1)x))

Token-MLP Block:

y = ϕ(J⊤c (IS ⊗W⊤
4 )ϕ((IS ⊗W⊤

3 )u))
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MLP with static-mask

Static Mask: Consider a matrix M of entries 0 or 1 distributed and
replace W in each layer of MLP by M ⊙W :

y = ϕ((M ⊙W )x)

M ∼ Bernoulli(p)

The mask matrix M is fixed during the training.
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Hidden features and test accuracy
We use centered kernel alignment (CKA) to validate the similarity
of networks:

CKAminibatch(X ,Y )

=
k−1

∑
i HSIC1(XiX

⊤
i ,YiY

⊤
i )√

k−1
∑

i HSIC1(XiX⊤
i ,XiX⊤

i )
√

k−1
∑

i HSIC1(YiY⊤
i ,YiY⊤

i )
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Figure: CKA results on CIFAR10
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Sparseness under fixed connectoins

The following hypothesis has a fundamental role:
Hypothesis.[Goluveva+(2021)] Increasing the width up to a
certain point while keeping the number of weight parameters fixed
results in improved test accuracy.
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Tendency on S and C

S =
(
√
C 2 + 8Ω/(γC )− C )

2

max
S,C

m = (Ω/γ)2/3

The max is achieved when C = C ∗, S = S∗ with:

C ∗ = S∗ = (Ω/γ)1/3

Figure: Sparseness and Width
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Test Error Tendency w.r.t. Widening: Spectral Difference
Sparse Masked MLP and MLP-Mixer had a similar tendency of test
error!
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Figure: (left) Test error of MLPs with sparse weights and MLP-Mixers
with different widths γm under the fixed Ω. We set Ω = 219,
S = C = (Ω/γ)1/3, and γ = 2. The x-axis represents the effective width
γm.
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Test Error Tendency w.r.t. Widening: Spectral Difference
Sparse Masked MLP and MLP-Mixer had a similar tendency of test
error!
The differences in spectrum a wide limit cause the difference in
training. (The s.v.d. of J(I ⊗W )J converge to the MP-law.)
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Figure: (right) The blue line indicates the averaged singular values of the
weight M ⊙ A of SW-MLP over five trials with different random seeds.
The red line indicates cγ , which is the square root of the right edge of
the MP-Law.
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What role of J and ⊗ in other Models?

Q. We can present Mixer using J an ⊗. Are there other DNN
which relies on such structured weights?
A. Monarch.
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FFT
MLP-Mixer’s similarity to Monarchs

Monarch Mixer: NeuRIPS2023, arXiv:310.12109 Can we design a
structured weight representing a fast Fourier transform (FFT)?

Figure: Visualization of FFT (from Dan.Fu, hazyresearch.stanford.edu/)
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Butterflies
MLP-Mixer’s similarity to Monarchs

FFT is decomposed into a product of butterfly matrices.

Figure: from Dan.Fu, hazyresearch.stanford.edu/
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The Monarch matrix
MLP-Mixer’s similarity to Monarchs

Tri. Dao+ (arXiv:2204.00595) proposed a monarch matrix:

M = J⊤c LJcR

where L and R are trainable block diagonal matrices, each with
√
n

blocks of size
√
n ×

√
n:

L = diag(L1, . . . , L√n),

R = diag(R1, . . . ,D√
n)

Butterfly can be written as a Monarch matrix.
In general, Monarch matrices

▶ be sparse in trainable parameters

▶ achieves comparable performance to dense matrices

▶ can represent many commonly used structured matrices
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Tensor Product v.s. Monarch
MLP-Mixer’s similarity to Monarchs

Without activation, the Mixer’s weight (Tensor/Kronecker
Product) is a Monarch matrix that shares block-diagonal weights.
Mixer:

y = Jc(IC ⊗W )Jc(IS ⊗ V )x .

In our experiments, Monarch and Kroneker (Tensor) perform
similarly.
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Figure: CIFAR10, 10 seeds. (from RK & TH, arXiv:23)
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Large Scale Experiments: ImageNet-1k
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Random Permuted Mixer
Alternative to MLP with static masks

We introduce Random-Permuted (RP) Mixer by replacing
J⊤c (I ⊗ V )Jc with random permutation matrices:

J1(I ⊗ V )J2

where J1 and J2 are independent uniformly distributed permutation
matrices.
Notes:

▶ RP-Mixer is less structured than MLP-Mixer: RP-Mixer does
not share tokens.

▶ RP-Mixer is more algebraically structured than MLP with
random static masks: M ⊙W
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Similarity of MLP-Mixer and RP-Mixer

Under a fixed number of connections, MLP-Mixer and RP-Mixer
shared the similar tendency on C/S : they had minimal test error
around S/C = 1, that is, in maximal width.

Figure: Comparison of MLP-Mixer and RP-Mixer
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Application to HPS: Increase in width with a fixed number
of connections

Hypothesis (Golubeva et al. 2021): Increasing the width while
maintaining a fixed number of weight parameters improves test
accuracy.
The average number of non-zero entries per layer:

Ω =
γ(CS2 + SC 2)

2

Figure: Test accuracy improvement by widening layers
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Summary
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Summary and Future Work

▶ Widening gives us a theoretical understanding of DNN.

▶ Widening when fixing the number of connections gives us
practical knowledge of MLP-Mixer: MLP-Mixer behaves as an
extremely wide and sparse MLP.

▶ J and ⊗ also appear in other DNN (Monarch)

Future Work:

▶ When does freeness have a role in practical deep neural
networks?

▶ Other random but hierarchical structured features/network
out of Monarch or Random Permutation + ⊗?

▶ (WIP) Replacing ⊗ with ∗ (free product) has a meaningful
effect in ML?
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