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The problem

A random polynomial (or tensor, i.e., multi-linear map) is difficult
to evaluate.

The problem: Write down explicit polynomials (tensors) that are
difficult to evaluate.

More precisely: write down explicit sequences of polynomials
(tensors) that are difficult to evaluate.

This talk is about explicit polynomials (tensors) that behave like
random ones as far as their complexity is concerned.

Non-example: detn: homogeneous polynomial of degree n in n2

variables,
detn(X ) =

∑
σ∈Sn

sgn(σ)x1,σ(1) · · · xn,σ(n)
explicit, each term easy to describe (coeffs 0,±1). Despite n!
terms, easy to evalulate (Gaussian elimination)
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Warning

Classical text: Computational Complexity (Arora and Barak)

Chapter 14: Circuit lower bounds: Complexity theory’s
Waterloo
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General strategy

Prove lower bounds for polynomials (tensors) with symmetry.

Example of polynomial with a lot of symmetry: detn
as detn(X ) = detn(gXh), g , h: matrices with det = 1
dim(Gdetn) ∼ 2n2 − 2.

Others?
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The most famous version (L. Valiant 1978)
Conjecture (Valiant, algebraic version of P v. NP) There exist
explicit sequences of polynomials that are nearly as difficult to
evaluate as random ones.

More precise version:

Thm. (Valiant) Any polynomial p(x1, . . . , xM) may be expressed as
the determinant of an N × N matrix whose entries are affine linear
forms in the xi , for some N.

Moreover, the smallest N that works, denoted dc(p), captures the
complexity of evaluating p.

Conjecture: Let permm ∈ Sm(Cm2
) denote the permanent. Then

dc(permm) grows faster than any polynomial in m.

Note permm has symmetry:
permm(Y ) = permm(gYh) where g , h either permutation matrices
or diagonal with determinant one.
dim(Gpermm

) = 2m − 2
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Example (B. Grenet 2011)

perm3

y11 y12 y13
y21 y22 y23
y31 y32 y33

 = det7



0 0 0 0 y33 y32 y31
y11 1
y12 1
y13 1

y22 y21 0 1
y23 0 y21 1
0 y23 y22 1


So dc(perm3) ≤ 7. Known = 7, moreover (Mignon-Ressayre 2004)

dc(permm) ≥ m2

2 . Proof via local differential geometry.
Still state of the art.
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Grenet’s example in general

Grenet:
dc(permm) ≤ 2m − 1

Prop. (L-Ressayre 2017): Grenet’s example has symmetry.
(Sm × Tm), about half the symmetries of permm.

More precisely: map Cm2 → C(2m−1)2 is equivariant for Sm × Tm.

Theorem (L-Ressayre 2017): If insist on expressions with
symmetry, Grenet’s example is optimal.
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Allowing a small error

Example: p(x , y) = x2y cannot be written as a sum of two cubes
ℓ31 + ℓ32.

But p(x , y) = limϵ→0
1
3ϵ [(x + ϵy)3 − x3]

Let dc(p) be smallest N such that p may be expressed as a
determinant with error at most ϵ, any ϵ > 0.

Theorem (L-Manivel-Ressayre 2013) dc(perm3) ≥ m2

2 .

To solve, had to solve a 100 year old question in algebraic
geometry about dual varieties.
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Notation
A = Ca : column vectors,
GL(A): group of invertible linear maps A → A i.e., group of
changes of bases.

A∗: row vectors = space of linear maps A → C, where α ∈ A∗,
v ∈ A, α(v) = αv , row-column mult.

a× b matrix M

Could represent
M : B → A linear map
w 7→ Mw .
Or bilinear form
M : A∗ × B → C
(α,w) 7→ αMw
Both cases: Same group action GL(A)× GL(B)

Normal forms

(
Idk 0
0 0

)
0 ≤ k ≤ min{a,b}: finite number of orbits
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Group actions

Bilinear forms: GL(A)× GL(B) acts on A⊗B, finite number of
orbits, simple normal form for each.

Use: efficient algorithm to solve systems of linear equations
(ancient China, rediscovered by Gauss) or to compute determinant

Exploit (part of) group action to put system in easy form.
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Tensors

Now consider T ∈ A⊗B⊗C . (or T ∈ A1⊗ · · ·⊗ Ak)

Trilinear form A∗ × B∗ × C ∗ → C.
Bilinear map A∗ × B∗ → C .

Linear map TA : A∗ → B⊗C

Note
dim(Cm⊗Cm⊗Cm) = m3 >> 3m2 = dim(GLm × GLm × GLm), no
hope for normal forms in general.

Example: A∗,B∗,C = A algebra, T = TA structure tensor. i.e.,
TA(a1, a2) := a1a2.
In particular, A,B,C space of n × n matrices T = M⟨n⟩ structure
tensor of matrix multiplication.
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Complexity of Tensors
Def. T ∈ A⊗B⊗C has rank one if ∃ a ∈ A, b ∈ B, c ∈ C such
that T = a⊗b⊗c .

rank R(T ): smallest r such that T is a sum of r rank one tensors

border rank R(T ): The smallest r such that T is a limit of rank r
tensors.

Both R(T ) and R(T ) measure the complexity of evaluating the
bilinear map associated to T .
Thm. (Essentially Terracini 1911, Precise version Lickteig 1985):
Let T ∈ Cm⊗Cm⊗Cm. If T is random, (and m ̸= 3) then

R(T ) = R(T ) = ⌈ m3

3m − 2
⌉ ∼ m2/3

Hay in a haystack problem for tensors: find an explicit tensor
with rank or border rank of a random tensor, or at least large
border rank (complexity).

12 / 17



Hay in a haystack for tensors (embarassing state of the art)
Have explicit T ∈ Cm⊗Cm⊗Cm

(resp. explicit sequence Tm ∈ Cm⊗Cm⊗Cm) with:

Classical R(Tm) ≥ m.

Strassen (1983) R(Tm) ≥ 3
2m. In particular m = 3, explicit with

random border rank 5.

Lickteig (1985) R(Tm) ≥ 3
2m + 1

2

√
m − 1.

L (2005) m = 4, R(M⟨2⟩) = 7, random border rank.

L-Ottaviani (2010) R(M⟨n⟩) ≥ 2n2 − n, i.e., explicit sequence with
R(Tm) ≥ 2m −

√
m

L (2015) explicit sequence with R(Tm) ≥ 2m − 2
Other than trivial cases, a = b = c ≤ 4, in 2023 only cases with
explicit tensor of random border rank.

Theorem (D. Wu 2024) Explicit tensor in C3⊗C6⊗C8 with border
rank of a random tensor (namely 10).
largest case where hay in a haystack problem is solved.
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Idea of proofs: retreat to linear algebra

Choose linear map f : A⊗B⊗C → U⊗V .

Say rank(f (a⊗b⊗c)) ≤ s for all rank one tensors.

Then if rank(f (T )) > sr , conclude R(T ) > r .

Choice of f made with aid of representation theory.

Example: U = ΛpA∗⊗B and V = Λp+1A⊗C , judiciously chosen p.

Rem: this gives rise to best bounds, but ∼ 1 year to implement for
M⟨n⟩.

Theorem (Efremenko-Garg-Oliviera-Wigderson 2017) Game
(almost) over for these methods.
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A phyrric victory

Idea: use tensors with special symmetry and Borel fixed point
theorem to prove non-existence of border rank decompositions.

More precisely: if can show that restricting T to any BT -fixed
hyperplane has border rank at least k, then R(T ) ≥ k + 1. Here
BT ⊂ GT is a Borel subgroup. “border substitution method”

⇝
(L-Michalek 2022): Explicit sequence with R(Tm) ≥ (2.02)m.
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A path to breaking the barriers: Buczynska-Buczynski 2022

Classical v. Modern algebraic geometry: shift in perspective from
the geometric object to its ideal.

To prove lower bounds for T , prove there does not exist a curve of
ideals. Sufficient to prove there does not exist a Borel fixed limit
point.

Conner-Harper-L (2023): used to prove many new lower bounds, in
particular R(M⟨3⟩) ≥ 17, R(det3) ≥ 17, in fact = 17, and
(C-Huang-L 2023) R(perm3) = 16.

The problem of univited guests: not all Borel fixed limit points
come from an admissible curve. Similar barrier.

Work in progress (with Conner, Huang, Mandziuk): use
deformation theory to get rid of uninvited guests, i.e. to overcome
barrier. So far: small test cases. Stay tuned!
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Thank you for your attention

For more on tensors, their geometry and applications, resp.
geometry and complexity, resp. asymptotic geometry, resp.
quantum computation and information:
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