Inflection and complex random tensors

\nHow the minimum element,
$$
com/ihp
$$

\nTo in the example, $combinian (kenne, com/ihp)$

\nJohnVATIONS

\nFig. how close is a random quantum state $|PP|$ (element of $(a^j)^{\otimes p}$)

\nby being separate rank one formula. If $lim, ..., \psi_p$:= $|\psi_p$ > $\frac{m}{2}$

\nAgain, lim : Upper bound for one formalization of lim as a constant in Q .

\nIntersing because:

\n\n- When lim is different from previous bounds (comes from spinaglasses)
\n- When lim is different from previous bounds (comes from spinaglasses)
\n- How the formula: 10
\n- Step 1: "Quantum state" \sim "Tensor"
\n- Interpret quantum states as the mass $\tau \in (a^j)^{\otimes p}$
\n- Is in the problem, there is a random basis, then the ring separable."
\n

(2) Step 2: "for finite pointe on "injective norm"
\n
$$
\mathsf{M} \circ \mathsf{tr} \circ \mathsf{ker} \circ \mathsf{Sep} = \mathsf{rank} \circ \mathsf{ne}
$$
, $\mathsf{Tr} \times \mathsf{y}^T$, $\mathsf{Sep} \circ \mathsf{one}$ geometric notation of
\n $\mathsf{close} \leftrightarrow \mathsf{sep}$." 'A one over- loop with rank one metric's
\n $\mathsf{max}_{\|\mathsf{y}\|=\|\mathsf{t}\|\mathsf{t}\|\mathsf{t}\|\mathsf{t}} \leq \mathsf{f} \cdot \mathsf{xy}^T \cdot \mathsf{Prob} = \mathsf{max}_{\|\mathsf{y}\|=\|\mathsf{t}\|\mathsf{t}\|\mathsf{t}} \leq \mathsf{M} \cdot \mathsf{max}$

\nThus, $\mathsf{max}_{\|\mathsf{y}\|=\|\mathsf{t}\|\mathsf{t}\|\mathsf{t}\|\mathsf{t}} \leq \mathsf{max}_{\|\mathsf{y}\|=\|\mathsf{t}\|\mathsf{t}\|\mathsf{t}\|\mathsf{t}} \leq \mathsf{H} \cdot \mathsf{supp} \cdot \mathsf{sup$

$$
MmKs
$$
\n⇒ "What is the injective norm of a Gaussian tensor P?
\n
$$
RmKs
$$
\n
$$
WmKs
$$
\n<math display="block</math>

HISTORY

· ^p ⁼ 2 is the operator norm of ^a Gaussian matrix (classical)

\n- \n
$$
p = 2
$$
 is the operator norm of a Gaussian matrix (classial).\n
\n- \n Symmetric case beaf:1; from\n \n $\lim_{n \to \infty} (kellogq 1928, \text{van de Copt-Schaake 1935):} \text{Determinably,}$

\n $\|T\|_{\{n\}} = \max_{\|x\| \leq 1} |(1, x^{(1)} \otimes \cdots \otimes x^{(p)})| \leq \max_{\|x\|=1} |(1, x^{(0)} \otimes x^{(p)})|$ \n \Rightarrow Real symmetric, p fixed does case is ground state of spherical p-spin\n \n \Rightarrow completely solved (Crisont: - Sommers 1995, Auffing - Be. Arows\n \n \therefore Zony 2013, Subag 2017)\n

\n
\n

$$
-1
$$
 completedly solved (Crisont, - sometimes 1112, Noting-
$$
Cern\acute{y} 2013, Subag 2017)
$$

\n• Otherwise, 2-net keluajges give correct order but not correct constant:
\n• Gross- Flamma's 2009: When d=2, C, normalized, Jc, C
\n
$$
\mathbb{P}\left(c \frac{\sqrt{\log p}}{2^{p/2}} \leq ||\widetilde{T}||_{:nj} \leq C \frac{\sqrt{\log p}}{2^{p/2}} \right) \xrightarrow{p \to \infty} 1.
$$

\n(Our result: C=1+2)

\n- Tomi_{ok}a - Suzuk: 2014, Ngyen - Drineas - Tran 2015: R, unnormalized, finite - d,p bounds roughly like
\n- || T ||_{in}
$$
\leq C
$$
 $\sqrt{d\rho \log \rho}$
\n- (Ov_r result: C = |+E)
\n

· Numerics: Fifte - Lancier-Nechita 2022; Both \mathbb{R} +C, both sym./non $p = 3$ or 4 and $d \rightarrow \infty$.

#hm: (Durtois-M. 2024) : High-probability upper bound for · nonsymmetric \cdot pas or θ +00 · ^R or I · normalized or unnormalized Leading constant is explicit, conjecturally light , and in special cases agrees with · Numerics of Filter-Lancier-Nechita · Simultaneous physics work of Sasakura ²⁰²⁴ · Conditional Spin-glass results of Subag . One example of the bound: \mathbb{R} , unnorm, p fixed, d-200. · Previously: $\|\tau_{syn} \|_{\omega} \approx \sqrt{d} \cos(\rho)$ where $E_{0}(\rho)$ is implicitly defined, $\frac{E_{0}(\rho)}{\sqrt{\log\rho}} \rightarrow 1$ as $\rho \rightarrow \infty$ \cdot Us: $||\tau||_{q} \leq \sqrt{dp}$ Eo(p)($|+q$).

InkS: ① Same tolp) ! Simple explanation? ② Verifies folklore notion "nonsymmetric states are more entangled than symmetric states"

$$
\begin{array}{ll}\n\hline\n\text{M}_{\text{eff}}\text{M}_{\text{eff}}\text{M}_{\text{eff}} & \text{Conormalized real case} \\
\hline\n\text{M}_{\text{eff}}\
$$

$$
B = \begin{pmatrix} 0 & N(c,1) \\ 0 & D \\ N(c,1) & 0 \end{pmatrix}
$$
 build on Be A_{rows}-Bov-gole-M. 2021

High-level reason why E(p) still appears:

\nIf motorix W has Wij ~
$$
W(o_i o_i^1)
$$
, histogram is still semi-circular

\nif all row sums are equal :

\n $\sum o_i^2$ does not depend on i.\nSimilarly:

\nSimilarly:

\nNumber information: Kau-Rice can give the constant on injective

\nnoons than E-nels, and recent PMT advances help

\nBying losses: Quantum motivation for ground shell of unusual spin glasses:

\nGraphs: P—300

\nGraphs: Complex

\nOpens: Marking lower bound: 2 (stay tuned)

\n6) All of many black lines are not possible.

② Non-Gaussian models of randomness, like MPS Lot clear that Kac-Rice applies ③ Alt ^a signal ? (Non-symmetric analogue of tenso- PCA results? This is the pure noise case)