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» a prob. distribution 7 : [N] — [0, 1] (questions)
» Some coefficients ¢; € {—1,1} foreveryi=1,--- /N

Given question |¢;) and answers (a;, b;), the players win the
game if and only if
a; - b,' = C;j.
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Ha® Hp, it assigns a probability distribution over the questions:

P(p)=P(a, b|p)ap=-+1
= tr(Ma7bP)a7b:i17

where (Ma’b)ab:i‘] isa POVM in B(Ha ® Hp).

B(G,P) = 2( Pwin(G) — Prandom G) ZPIC/ Z abP(a, b|p;)

a,b=+1
YESoo(HA)®Sc(HB) GeS; (Ha)®S1(Hp)

N
=tr (Z abMa,b) (Zpic,-p,) =tr(v- G)
i=1

a,b==+1
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B(G) =sup{tr (X @ Y)G) : [ Xllssan) < 1,11 Yllssame) < 11
= ||Gllssa(rp)m. s52(5) = |G+ S (Ha) = STE(Hs)|

Entangled strategies:
Map = trap ((EéqA/ ® FEF) (1@ PA’B’)) € B(Ha) ® B(Hp)

5(G) = sup {tr (X @ YBE)(G @ pas ) -
X[ ssaaery) < 1 I1Y Issapeny) < 1, pas}
= [|Glls, (#a)@ 1 (a) = |G : Soc(Ha) = S1(Hp)llch
Global strategies: Map = Ezp € B(HaB)-
B(G) = sup {tr(ZG)) : |1 Z||ss.a(rns) < 1}
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gXOR games to quantify resources

» There are some gXOR games games G s.t. —*‘3*((6)) > 1.
» There are families of gXOR {Gpn}, s.t. lim), d((GG")) =
Gn game (Regev-Vidick): For every n,
o i=1,2

iy 00— ST ) = - 100) S i
‘L/1>_ \/§|OO>+\/ﬁ;|”>’ ‘2> \/E‘OO> m§|”>

o (i) =13 forevery/
e Ci=1,0C =

It can be seen that 5(G) = while 5*(G) = 1.

f!
In addition, 5*(G) = 1 can only be achieved in the limit of
infinite entanglement

> For every gXOR game 3}, (G) < 2v253(G)
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20

ng(G) = sup { Z tr ((Ax ® Bx)G) :

k=1
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It turns out that 5. (G) = sup. 55, (G) is equivalent to
sup |[Id @ G : £§ @min Soo(Ha) — 5(S1(Hp))||
Cc

= m1.(G : Su(Ha) = S1(Hg))
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Problem: Quantum entanglement vs classical communication

: There exists a
universal constant K such that for every quantum XOR game G
we have

B*(G) < KB-(Q).

Proof: |G : 8L — S¢|ep < Ky (G : S, — S)

It is based on functional analysis: Factorizations theorems +
NC Little Grothendieck’s theorem

Remark: It is not enough to control 5, (G)
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Useful (sometimes ---): LOCC strategies ¢ SEP strategies
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Then,
_B(G) B*(G)

sup > sup
eSS0 SY Broce(G) Gesdesiast Psep(G)

Theorem (Junge, P.): Given natural numbers d and m s.t.
d > Cm*\/logm (C is a universal constant) we have, for large
enough m,

vm

H; : 8% @ 8 @ 8L — 89 @ pmin S§ @ min S H > Klogz -

Corollary: There exists a family of tripartite XOR games {G,},

s.t. [}*(G )
i Brocc(Gn)



THANK YOU VERY MUCH



