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Talk summary

• additivity problems and instances of Dvoretzky’s theorem (DT)

• Milman’s tangible version of DT

• derandomizing/partial derandomizing of DT for classical Lp-spaces

• two feeble attempts for non-commutative Lp’s (Schatten classes)

- finite geometries

- random Pauli matrices
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Talk summary

• additivity problems, minimum output entropy

• connection to Dvoretzky’s theorem (DT)

• Milman’s tangible version of DT

• derandomizing/partial derandomizing of DT for classical Lp-spaces

• two feeble attempts for non-commutative Lp’s (Schatten classes)

- finite geometries (pseudo-random tensors ??)

- random Pauli matrices (random tensors ??)
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Additivity problems, minimal output entropy

Let H,K be finite-dimensional complex Hilbert spaces and let
Φ : B(H) → B(K) be a CPTP map (a quantum channel).

In 1970’s through 1990’s, various forms of capacity of CPTPs for
transmitting information were defined and studied, one of them being the
capacity χ(Φ) for transmitting classical information (Holevo, Shumacher,
Westmoreland etc.) Inevitably, a question was raised whether such
capacity is additive, i.e., whether

χ(Φ⊗Ψ)
?
= χ(Φ) + χ(Ψ)

This appeared a hopeless problem until P. Shor showed in early 2000’s that
an affirmative answer would follow from the additivity of a much more
tractable quantity, the minimal output entropy, defined by

Smin(Φ) = min
ρ∈D(H)

S(Φ(ρ)).

where D(H) are the states on H and S(·) is the von Neumann entropy.
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Connection to functional analysis, part 1

The connection to classical functional analysis (and ultimately to
Dvoretzky’s theorem) is based on several observations, all of which were
well-known.

First, by the Stinespring-Kraus-Choi theorem, for any CPTP map
Φ : B(H) → B(K) there exists another space E and an isometry
V : H → K⊗ E such that Φ can be represented as follows

Φ(ρ) = trE(V ρV
†),

where trE is the partial trace. Next, by the concavity of entropy, the
infimum in the definition of Smin(Φ) is attained on pure states ρ = |ψ⟩⟨ψ|,
which means that

Smin(Φ) = min
|ψ⟩∈H

S
(
trE(V |ψ⟩⟨ψ|V †)

)
= min

|φ⟩∈W
S
(
trE(|φ⟩⟨φ|)

)
,

where W = VH and ψ,φ are unit vectors. In other words, the calculation
reduces to an analysis of a linear subspace W ⊂ K⊗ E .
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Connection to functional analysis, part 2

The next observation is that the entropy of τ := trE(|φ⟩⟨φ|) depends only
on its eigenvalues, which are squares of the Schmidt coefficients of |φ⟩.
We now cheat a little and pretend that |φ⟩ ∈ K ⊗ E is an operator from K
to E , or just a d × k matrix A for appropriate d , k, and we will restrict out
attention to k = d . In other words, we just need to understand the
patterns of singular values of operators in an m-dimensional subspace of
the space of d × d matrices, where m = dimH.

Finally, we note that the von Neumann entropy S(σ) is the limit, as
p → 1, of p-Rényi entropies

Sp(σ) :=
1

1− p
log(trσp) =

p

1− p
log ∥σ∥p

where ∥τ∥p =
(
tr
(
τ∗τ

)p/2)1/p
is the Schatten p-norm. That is, we want

to understand the geometry of the m-dimensional subspaces W of the
q-Schatten space of d × d matrices, where q = 2p. More precisely, we
want to find R ≥ 1 such that, for A ∈ W,

d1/q−1/2∥A∥2 ≤ ∥A∥q ≤ Rd1/q−1/2∥A∥2.
S. Szarek (CWRU/Sorbonne U.) Noncommutative Λp -sets IHP, Oct 18, 2024 6 / 16



Dvoretzky’s theorem (1961)

There exist sequences kn → +∞ and εn → 0+ such that, for every normed
space X with dimX ≥ n there exists subspace E ⊂ X with dimE ≥ kn,
which is Euclidean, up to εn.

Equivalently

For every 0-symmetric convex body. K ⊂ Rn there is a central section
E ∩ K of dimension at least kn, which is – up to εn – a Euclidean ball.

Or, back to the language of norms (say, on Rn or Cn)

r−1 ≤ ∥x∥
|x |

≤ (1 + εn)r
−1 for all x ∈ E

for some scaling constant r , where | · | is the Euclidean norm.

The symmetry hypothesis is not essential and specific (optimal or near
optimal) formulae for (kn) and (εn) are known.
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Milman’s“tangible”version of Dvoretzky’s theorem

Dvoretzky theorem as stated doesn’t tell us the value of the scaling
constant r−1 = R, but this issue is taken care of by the following“tangible”
version due to Milman (1971):

Consider the n-dimensional Euclidean space (over R or C) endowed with
the Euclidean norm | · | and some other norm ∥ · ∥ such that, for some
b > 0, ∥ · ∥ ≤ b| · |. Denote M = E∥X∥, where X is a random variable
uniformly distributed on the unit Euclidean sphere. Let ε > 0 and let
m ≤ cε2(M/b)2n, where c > 0 is an appropriate (computable) universal
constant. Then, for most m-dimensional subspaces E we have

∀x ∈ E , (1− ε)M|x | ≤ ∥x∥ ≤ (1 + ε)M|x |.

A similar statement holds for Lipschitz functions in place of norms.
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Dvoretzky’s theorem for Schatten classes

In the specific case of q-Schatten spaces, calculating the parameter b is
more or less trivial, and finding the average M is routine using Gaussian
random matrices and Chevet’s inequality. In particular, if q = 2p > 2,
k = d , and ε = 1

2 we get m = Ω(d1+2/q) = Ω(d1+1/p), so that for A ∈ W,
a generic m-dimensional subspace of the space of d × d matrices, we have

d1/q−1/2∥A∥2 ≤ ∥A∥q ≤ Cd1/q−1/2∥A∥2
Since the lower and the upper bounds are of the same order, this is “as
good as it gets,”and leads to an unexpectedly sharp upper bound for the
minimal output Rényi entropy

Smin
p (Φ) := min

ρ∈D(H)
Sp(Φ(ρ)).

This sharp bound for the random channel Φ (and some other tricks)
allowed P. Hayden and A. Winter (2008) to produce a counterexample to
additivity of Smin

p (·) for p > 1 by considering the product Φ⊗ Φ.
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The counterexample to additivity

The counterexample to additivity of Smin(·) is more subtle, but is based on
the same general ideas. It was found by M. Hastings (2009).

Subsequent to their work, G. Aubrun, E. Werner and I realized that their
arguments involved in fact proving instances of Dvoretzky’s theorem,
allowing to simplify the proofs by using“off-the-shelf” technology, and
making them conceptual rather than ad hoc.

Is the failure of additivity good or bad?

An affirmative answer would greatly simplify the theory: BAD

On the other hand, a negative answer means that entanglement allows
using quantum channels more efficiently than previously thought: GOOD

But to exploit this opportunity one would need explicit maps for
reasonable values of the parameters m, d .
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Explicit examples of additivity violations?

The channels Φ obtained via Dvoretzky’s theorem are random,
high-dimensional, and even certifying their validity may be difficult. To the
best of my knowledge, explicit examples are known only for violations of
Smin
p for p > 2.

Here is a (narrowly failed) attempt for an example for a violation p = 2.

The starting point are the so-called Λq-sets of Rudin for q = 4. Those are
explicit subsets S ⊂ {0, 1, 2, . . . ,N − 1}, #S = Θ(N1/2) such that the
space E = span{e int : n ∈ S} is a Dvoretzky subspace of L4([0, 2π]). That
is, for every f ∈ E ,

∥f ∥2 ≤ ∥f ∥4 ≤ C∥f ∥2,

where C > 1 is a constant independent of f and of N. The dimension
m = Θ(N1/2) is likewise given by the (probabilistic) proof of the
Milman-Dvoretzky theorem and is optimal.
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Λ4-sets via finite geometries, an outline

We first note that in order to control

∥f ∥44 =
1

2π

∫ 2π

0

∣∣∣∑
n∈S

ane
int
∣∣∣4dt = 1

2π

∫ 2π

0

∑
nj∈S

an1an2an3an4e
i(n1+n2−n3−n4)tdt

we need to control, for a given α, the number of solutions of n1 + n2 = α,
ideally have only one solution (modulo order).

Assume N = p2 ( p prime, or a prime power) and identify
{0, 1, 2, . . . ,N − 1} with F2

p, where Fp is the field with p elements.
Let S = {(k, k2) : k ∈ Fp}, then (k1, k

2
1 ) + (k2, k

2
2 ) = (α, α′) can have at

most one solution in Z and just a few in Fp. So such S works.

Similar ideas work for other q ∈ 2N, but not for q ̸∈ 2N that. More about
the latter case later.
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Λ4-sets, 2nd attempt

Here is a version of the construction for the group Zk
2 (rather than Z or

ZN). Let k = 2r , so Zk
2 = Zr

2 × Zr
2. Consider now the set of characters on

Zk
2 , indexed by α ⊂ {1, 2, . . . , k}, which can be identified with Walsh

functions wα =
∏

j∈α ϵj , where ϵj is a ±1-valued Bernoulli variable

depending on the j-th coordinate in Zk
2 . There are N = 2k = 22r such

functions, and so their span is of dimension N.

Let us further identify Zr
2 with a field Fs of cardinality s = 2r . Then each

α ⊂ {1, 2, . . . , r} can be thought of as an element of Fs . We now set

S := {(α, α3) : α ∈ Fs} ⊂ Fs × Fs = Zk
2 .

Here the power α3 is meant in the sense of the multiplicative structure of
Fs , which is different from that of the ring Zr

2. Then #S = 2r = N1/2 and
a simple calculation shows that S is a Λ4-set, whose size is of largest
possible order of magnitude.

S. Szarek (CWRU/Sorbonne U.) Noncommutative Λp -sets IHP, Oct 18, 2024 13 / 16



Non-commutative Λ4-sets

We now replace Bernoulli variables with Pauli matrices and consider, for
α ∈ {0, 1}k ,

Xα :=
k⊗

j=1

σ
αj
x ,

i.e., a tensor product where the jth factor equals σx if αj = 1 and equals I
if αj = 0. These behave exactly like Walsh functions, so again
{Xα : α ∈ S} is a Λ4-set. Analogously, one could introduce the Λ(4)-sets
{Yβ : β ∈ S} and {Zγ : γ ∈ S}. One is now tempted to try
{XαYβZγ : α, β, γ ∈ S}, which – had it worked – would give a set of
cardinality m = (2r )3. Since the dimension of the Hilbert space is here
d = 2k = 22r , we would have had m = d3/2 = d1+2/q, exactly as in the
Dvoretzky theorem. Unfortunately, this doesn’t quite work.

However, if rather than using the previous construction as a black box, we
start from scratch and consider {XαYβ : β = α3, α ∈ Fd}, then we get a
Λ(4)-set, whose size is just on the border of yielding a violation of
additivity for p = 2.
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Random commutative and non-commutative Λ4-sets

For q > 2, q ̸∈ 2N, there are two Acta Math. papers (J. Bourgain (1989),
and Talagrand (1995), simplifying the original proof) that basically show
that – in the case of characters – random choice of a subset S of the
proper size works. Both papers are a tour the force, using the state of the
art in the analysis of sub-Gaussian processes.

I went through a simpler variant of the Talagrand argument, and it
appears to give a Λq-subset of Pauli matrices of cardinality
m = Ω(d (1−ε)(1+2/q)). This would be enough to produce a violation for
additivity of p-Renyi entropy for any p > 1.

This is not an explicit procedure, but requires much less randomness than
the original Dvoretzky theorem : dimGd2,m = Θ(md2) bits vs. Θ(m log d)
bits. For general q, full derandomization seems beyond reach at this stage.
However, for q = 4, perhaps some Clifford group magic could help to
boost the construction from the previous page...
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THANK YOU!

S. Szarek (CWRU/Sorbonne U.) Noncommutative Λp -sets IHP, Oct 18, 2024 16 / 16


